Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namel...Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.展开更多
[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carr...[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem.展开更多
Biolog, 16S rRNA gene denaturing gradient gel electrophoresis (DGGE), and phospholipid fatty acid (PLFA) analyses were used to assess soil microbial community characteristics in a chronosequence of tea garden syst...Biolog, 16S rRNA gene denaturing gradient gel electrophoresis (DGGE), and phospholipid fatty acid (PLFA) analyses were used to assess soil microbial community characteristics in a chronosequence of tea garden systems (8-, 50-, and 90- year-old tea gardens), an adjacent wasteland, and a 90-year-old forest. Biolog analysis showed that the average well color development (AWCD) of all carbon sources and the functional diversity based on the Shannon index decreased (P 〈 0.05) in the following order: wasteland 〉 forest 〉 tea garden. For the DCCE analysis, the genetic diversity based on the Shannon index was significantly lower in the tea garden soils than in the wasteland. However, compared to the 90-year-old forest, the tea garden soils showed significantly higher genetic diversity. PLFA analysis showed that the ratio of Gram positive bacteria to Cram negative bacteria was significantly higher in the tea garden soils than in the wasteland, and the highest value was found in the 90-year-old forest. Both the fungal PLFA and the ratio of fungi to bacteria were significantly higher in the three tea garden soils than in the wasteland and forest, indicating that fungal PLFA was significantly affected by land-use change. Based on cluster analysis of the soil microbial community structure, all three analytical methods showed that land-use change had a greater effect on soil microbial community structure than tea garden age.展开更多
Comparisons of microbial community structure, in eight filter media of zeolites, anthracite, shale, vermiculite, ceramic filter media, gravel, steel slag and bio-ceramic, were undertaken by analyzing the phospholipid ...Comparisons of microbial community structure, in eight filter media of zeolites, anthracite, shale, vermiculite, ceramic filter media, gravel, steel slag and bio-ceramic, were undertaken by analyzing the phospholipid fatty acid (PLFA) composition. A total of 20 fatty acids in the range of C18to C20 were determined but only 13 PLFAs were detected in steel slag. They consist of saturated fatty acids, branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The variation of fatty acids was revealed in the relative proportions of these fatty acids in different media. The aerobic prokaryotes were the predominant group in all media. The PLFA composition showed significant differences among the eight different media by Tukey's honestly test. It was found that steel slag was significantly different in the microbial community as compared to other filter media, probably due to its alkaline effluent. Steel slag alone is probably not a good choice of substratum in constructed wetlands. The principle components analysis (PCA) showed that zeolites, bio-ceramic, shale and vermiculite had a similar microbial community structure while steel slag and ceramic filter media were distinct from other media.展开更多
With 110-d incubation experiment in laboratory, the responses of microbial quantity, soil enzymatic activity, and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whe...With 110-d incubation experiment in laboratory, the responses of microbial quantity, soil enzymatic activity, and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whether certain biological and biochemical characteristics could serve as reliable indicators of petroleum hydrocarbon contamination in meadow-brown soil, and use these indicators to evaluate the actual ecological impacts of 50-year petroleum-refining wastewater irrigation on soil function in Shenfu irrigation area. Results showed that amendments of ~ 1000 mg/kg diesel fuel stimulated the growth of aerobic heterotrophic bacteria, and increased the activity of soil dehydrogenase, hydrogenperoxidase, polyphenol oxidase and substrate-induced respiration. Soil bacterial diversity decreased slightly during the first 15 d of incubation and recovered to the control level on day 30. The significant decrease of the colony forming units of soil actinomyces and filamentous fungi can be taken as the sensitive biological indicators of petroleum contamination when soil was amended with 〉15000 mg/kg diesel fuel. The sharp decrease in urease activity was recommended as the most sensitive biochemical indicator of heavy diesel fuel contamination. The shifts in community structure to a community documented by Sphingomonadaceae within a-subgroup of Proteobacteria could be served as a sensitive and precise indicator of diesel fuel contamination. Based on the results described in this paper, the soil function in Shenfu irrigation area was disturbed to some extent.展开更多
The Loess Plateau in China is one of the most eroded areas in the world. Accordingly, vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem. Understa...The Loess Plateau in China is one of the most eroded areas in the world. Accordingly, vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem. Understanding the microbial community structure is essential for the sustainability of ecosystems and for the reclamation of degraded arable land. This study aimed to determine the effect of different vegetation types on microbial processes and community structure in rhizosphere soils in the Loess Plateau. The six vegetation types were as follows:two natural grassland (Artemisia capillaries and Heteropappus altaicus), two artificial grassland (Astragalus adsurgens and Panicum virgatum), and two artificial shrubland (Caragana korshinskii and Hippophae rhamnoides) species. The microbial community structure and functional diversity were examined by analyzing the phospholipid fatty acids (PLFAs) and community-level physiological profiles. The results showed that rhizosphere soil sampled from the H. altaicus and A. capillaries plots had the highest values of microbial biomass C, average well color development of carbon resources, Gram-negative (G-) bacterial PLFA, bacterial PLFA, total PLFA, Shannon richness, and Shannon evenness, as well as the lowest metabolic quotient. Soil sampled from the H. rhamnoides plots had the highest metabolic quotient and Gram-positive (G+) bacterial PLFA, and soil sampled from the A. adsurgens and A. capillaries plots had the highest fungal PLFA and fungal:bacterial PLFA ratio. Correlation analysis indicated a signiifcant positive relationship among the microbial biomass C, G- bacterial PLFA, bacterial PLFA, and total PLFA. In conclusion, plant species under arid climatic conditions signiifcantly affected the microbial community structure in rhizosphere soil. Among the studied plants, natural grassland species generated the most favorable microbial conditions.展开更多
To investigate the effects of biochar addition(1 or 3%)to the soil of a China fir plantation with or without litter,we conducted a 90-day incubation experiment.We also studied the C and N dynamics and the microbial co...To investigate the effects of biochar addition(1 or 3%)to the soil of a China fir plantation with or without litter,we conducted a 90-day incubation experiment.We also studied the C and N dynamics and the microbial community structure of the soil.In soil without litter,the application of biochar at a rate of 3%significantly decreased CO2 emissions,while addition of 1%biochar had no effect.Biochar application did not affect the net N mineralization rate but significantly reduced the NH4?concentration after 90 days.In litter-enriched soil,biochar application had no significant effect on total CO2 emissions;however,application of 3%biochar significantly reduced the net N mineralization rate.Biochar application to soil with or without litter immediately reduced the dissolved organic carbon(DOC)concentration independent of the application rate,which was primarily due to sorption of DOC by the biochar.Phospholipid fatty acid analysis demonstrated that both concentrations of added biochar to soil(with or without litter)altered the soil microbial community structure at the end of incubation,although the effect of biochar was not as strong as the effect of time or litter application.The effect of biochar addition alone on microbial community structure was inconsistent over time.Litter added to soil significantly increased fungi and reduced Gram-positive bacteria.In the presence of litter,biochar applied at both 1%and 3%significantly increased(p<0.05)the proportion of actinomycete only at day 90.Our results indicate biochar as a potentially effective measure for C sequestration in the test soil of a China fir plantation,even in the presence of litter.展开更多
Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatmen...Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) method was used to analyze the variation of the microbial community structure in the control and nicotinecontaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine- contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.展开更多
To investigate the effects of silver nanoparticles(Ag NPs)and low temperature double-pressure on the wastewater treatment efficacy and the microbial community structure of constructed wetlands,a pilot-scale vertical f...To investigate the effects of silver nanoparticles(Ag NPs)and low temperature double-pressure on the wastewater treatment efficacy and the microbial community structure of constructed wetlands,a pilot-scale vertical flow constructed wetland was set up to treat synthetic wastewater under laboratory conditions.By measuring the effluent concentration of ammonia nitrogen(NH_(4)^(+)-N),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(COD),and the diversity,richness,and community structure of microorganisms of the upper and lower soil layers in the wetland,the nutrient removal effect of the constructed wetland and the changes in the microflora of the soil layer were studied.The results reveal that the correlation coefficients between the removal rates of TN and NH_(4)^(+)-N and the temperature are 0.463 and 0.692,respectively,indicating a significant positive correlation.From the warm to the cold season,both the diversity and richness of microorganisms in the lower soil layer of wetlands are inhibited under the double-pressure of Ag NPs and low temperature,and the abundances of the denitrogenation functional bacteria such as Candidatus nitrososphaera,Sulfuritalea,Anaeromyxobacter,Candidatus solibacter,Nitrospira,and Zoogloea are altered.Low temperature and Ag NPs exposure can thus affect the wastewater treatment performance of constructed wetlands,possibly because of the seasonal changes of the microflora.展开更多
The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferroox...The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans)was used to leach three kinds of chalcopyrites with different iron-sulfur ratios.After 36 d of leaching,the chalcopyrite with iron-sulfur ratio of about 1:1 achieved the highest copper extraction(69.62%).In the early stage,iron oxidizing bacteria predominated,and the expression of rus and rio was 8 times higher than that in the late stage.In the late stage,sulfur oxidizing bacteria predominated,and the expression of tetH and HdrAB was 4 times higher than that in the early stage.Furthermore,the three bioleaching systems above were added with elemental sulfur(3 g/L);the chalcopyrite with iron-sulfur ratio of about 2:1 achieved the highest copper extraction(80.63%).The results suggest that the energy metabolism structure of the microbial community could be changed by changing the iron-sulfur ratio during the leaching process for improving the leaching efficiency of chalcopyrite.展开更多
The aim of this work was to assess the effect of applying three different doses of fluxapyroxad on microbial activity, community structure and functional diversity as measured by respiration, microbial biomass C, phos...The aim of this work was to assess the effect of applying three different doses of fluxapyroxad on microbial activity, community structure and functional diversity as measured by respiration, microbial biomass C, phospholipid fatty acid (PLFA) and community-level physiological profiles (CLPPs). Our results demonstrated that substrate-induced respiration (on day 15) and microbial biomass C (on days 7 and 15) were inhibited by fiuxapyroxad, but stimulation was observed thereafter. In contrast, fluxapyroxad addition increased the basal respiration and metabolic quotients (qCO2) and respiratory quotients (QR). Analysis of the PLFA profiles revealed that the total and bacterial biomass (both Gram-positive bacteria (GP) and Gram-negative bacteria (GN)) were decreased within the initial 15 days, whereas those as well as the GN/GP ratio were increased at days 30 and 60. Fluxapyroxad input decreased the fungi biomass but increased the bacteria/fungi ratio at all incubation time. Moreover, high fluxapyroxad input (75 mg fluxapyroxad kg-1 soil dry weight) increased the microbial stress level. A principal component analysis (PCA) of the PLFAs revealed that fluxapyroxad treatment significantly shifted the microbial community structure, but all of the observed effects were transient. Biolog results showed that average well color development (AWCD) and functional diversity index (H′) were increased only on day 60. In addition, the dissipation of fluxa- pyroxad was slow in soil, and the degradation half-lives varied from 158 to 385 days depending on the concentration tested.展开更多
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ...Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.展开更多
The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we ...The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea(Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis(PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by p H on the Changbai Mountains, besides p H, other soil features such as NO3–-N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.展开更多
To evaluate soil environmental quality of introduced new crops and other traditional crops,and to understand the importance of response of soil microbial community to heavy metal stress,rhizosphere soil samples of dif...To evaluate soil environmental quality of introduced new crops and other traditional crops,and to understand the importance of response of soil microbial community to heavy metal stress,rhizosphere soil samples of different land use types(Sphagnum farming,rice field,grassland and bare land) in Dading Village,Duyun City,Guizhou Province of China were selected as research objects.The differences of soil chemical properties,heavy metal concentration and microbial community among different land use types were compared.The abundance and structural diversity of microbial communities in soil samples were analyzed by 16S rDNA sequencing,the relationship between soil pollution characteristics and microbial community in farmland was studied.The results showed that the different land use types planting different agricultural products under the same growing environment were subject to different heavy metal pollution.Soil chemical properties and heavy metals had significant effects on the soil microbial community.Proteobacteria,Actinobacteriota and Acidobacteriota were the most dominant groups of bacteria.The soil microorganisms responded more actively to the variability of pH,SOM and AK contents,although the variability was not high.With the increase of pH value,the abundance of the dominant species Proteobacteria also increased.Verrucomicrobiota had a better tolerance to the heavy metal Hg.Verrucomicrobiota and Firmicutes had strong resistance to the heavy metal Cd.These results deepen our understanding of the changes and aggregation of microorganisms under different land use patterns in heavy-metal contaminated farmland soils.展开更多
To investigate the influence of bensulfuron-methyl(BSM)on culturable microbial quantities and unculturable microbial community structures,conventional and molecular biological methods were employed in five BSM treated...To investigate the influence of bensulfuron-methyl(BSM)on culturable microbial quantities and unculturable microbial community structures,conventional and molecular biological methods were employed in five BSM treated soils with three replications,respectively. The results obtained with traditional culture-dependent methods showed that a low-level of BSM had slight and transient effects on culturable microorganisms;nevertheless,high concentration of BSM resulted in a dramatic decrease in bacterial colony fo...展开更多
Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover m...Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its relationship with environmental factors, we applied Roche 454 sequencing of 16 S r DNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities' richness, compositions and structures as well as taxonomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups; while the archaeal community is dominated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota(96.66%) and methanogenic Euryarchaeota(3.21%). This study describes the microbial diversity in the Arctic deep marine sediment(〉3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.展开更多
The conventional fixed-bed biofilm process has disadvantages of easily blocked,high headloss and short operation cycle.For overcoming these disadvantages,a multi-stage biofilm reactor(MSBFR),in which the lightweight f...The conventional fixed-bed biofilm process has disadvantages of easily blocked,high headloss and short operation cycle.For overcoming these disadvantages,a multi-stage biofilm reactor(MSBFR),in which the lightweight floating filter was dominant,was set up and operated.For detail investigation of the system when treating municipal wastewater,the succession characteristic of microbial community was analyzed by polymerase chain reaction(PCR)-Denaturing Gradient Gel Electrophoresis(DGGE)method.The results showed that the process had high efficiency to removal COD,SS and NH4+-N.The concentration of COD,SS and NH4-N in effluent were maintained lower than 40 mg/L,5 mg/L and 2 mg/L even though the concentration of COD,SS and NH4+-N in influent were 232-663 mg/L,105-245 mg/L and 23.7-62.7 mg/L,respectively,and the empty bed retention time was 3 h.Furthermore,biofilm samples taken from the column 2nd in height were analyzed by PCR-DGGE.The result of PCR-DGGE analysis showed that the microbial community had a little change in height and the dominant groups were Paracoccus sp.,Lactobacillus delbrueckii,Pseudomonas sp.and Bacteroidetes bacterium.展开更多
Robinia pseudoacacia L.(RP)restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China,but ecological problems have also occurred due to RP restoration,such as reduced soil moisture.F...Robinia pseudoacacia L.(RP)restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China,but ecological problems have also occurred due to RP restoration,such as reduced soil moisture.Further,it is still uncertain how microbial diversity,composition and assembly processes change with RP restoration in semi-arid regions.Therefore,amplicon sequencing of small subunit ribosomal ribonucleic acid(16S rRNA)and internal transcribed spacer(ITS)genes was performed to study soil bacterial and fungal diversity,composition and assembly processes at four study sites with different stand ages of RP plantations(Y10,RP plantation with stand ages less than 10 a;Y15,RP plantation with stand ages approximately 15 a;Y25,RP plantation with stand ages approximately 25 a;and Y40,RP plantation with stand ages approximately 40 a)along a 40-a chronosequence on the Loess Plateau.The diversity of soil bacteria and fungi increased significantly during the restoration period from 10 to 15 a(P<0.05).However,compared with Y15,bacterial diversity was lower at Y25 and Y40,and fungal diversity remained stable during the restoration period between 25 and 40 a.The relative abundances of Proteobacteria and Ascomycota increased during the restoration period from 10 to 15 a.Conversely,after 15 a of restoration,they both decreased,whereas the relative abundances of Actinomycetes,Acidobacteria and Basidiomycota gradually increased.The variations in soil bacterial communities were mainly related to changes in soil total nitrogen,nitrate nitrogen and moisture contents,while soil fungal communities were mainly shaped by soil organic carbon and nitrate nitrogen contents.Bacterial communities were structured by the heterogeneous selection and stochastic process,while fungal communities were structured primarily by the stochastic process.The RP restoration induced an increase in the relative importance of heterogeneous selection on bacterial communities.Overall,this study reveals the changes in microbial diversity,community composition and assembly processes with RP restoration on the Loess Plateau and provides a new perspective on the effects of vegetation restoration on soil microbial communities in semi-arid regions.展开更多
A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and ...A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and nonrhizospheric soil. The results showed that the pyrene concentrations in soil decreased with time extending and were very significant less in rhizospheric soil grown with maize plants (p〈0.01). At the end of the 45-day experiment, the ratios of pyrene degradation were 61.25% and 35.58% in rhizospheric and nonrhizospheric soil, respectively. Maize enhanced the decrease of pyrene concentration and increased the degradation rate of pyrene in soil. During the experimental period, a relatively large amount of microbial biomass biomass (Craig), basal soil respiration, the Cmic/Corg ratio, enzyme (urease, dehydrogenase, polyphenol oxidase, and catalase) activities were detected in rbizospheric soil. Metabolic quotient was lower in rhizospheric soil than in nonrhizospheric soil at the whole experimental period. Soil microbial communities in rhizospheric soil and nonrhizospheric soil were characterized using fatty acid methyl ester (FAME) analysis. Fatty acid profiles demonstrated that soil microbial community structure was significantly altered in pyrene contaminated soil with maize. Fatty acid indicators for fungi and the ratio of fungi to bacteria significant increased, and fatty acid indicators for bacteria and Gram-negative bacteria significantly decreased. The effect gradually increased and got very significant (p〈0.01) with the time extending. The differences of fatty acid indicators for arbuscular mycorrhizal fungi (AMF), Gram-positive bacteria and actinomycetes gradually increased, and the differences reached significant level (p〈0.05) at the end of the experiment (45 d).展开更多
With the rapid expansion of livestock production,the amount of livestock wastewater accumulated rapidly.Lack of biodegradable organic matter makes denitrification of livestock wastewater after anaerobic digestion more...With the rapid expansion of livestock production,the amount of livestock wastewater accumulated rapidly.Lack of biodegradable organic matter makes denitrification of livestock wastewater after anaerobic digestion more difficult.In this study,Myriophyllum aquaticum constructed wetlands(CWs)with efficient nitrogen removal performance were established under different carbon/nitrogen(C/N)ratios.Analysis of community composition reveals the change of M.aquaticum CWs in microbial community structure with C/N ratios.The proportion of Proteobacteria which is one of the dominant phyla among denitrifier communities increased significantly under low C/N ratio conditions.Besides,to obtain cultivable denitrifier that could be added into CWs in situ,33 strains belonging to phylum Proteobacteria were isolated from efficient M.aquaticum CWs,while the best-performing denitrification strain M3-1 was identified as Bacillus velezensis JT3-1(GenBank No.CP032506.1).Redundancy analysis and quadratic models showed that C/N ratio had significant effects on disposal of nitrate(NO_(3)^(−)-N)and the strains isolated could perform well in denitrification when C/N ratio is relatively low.In addition,they have relatively wide ranges of carbon sources,temperature and a high NO_(3)^(−)removal rate of 9.12 mg/(L·hr)at elevated concentrations of 800 mg/L nitrate.Thus,strains isolated from M.aquaticum CWs with low C/N ratio have a practical application value in the treatment of nitrate-containing wastewater.These denitrifying bacteria could be added to CWs to enhance nitrogen removal efficiency of CWs for livestock wastewater with low C/N ratio in the future.展开更多
基金funded by the Project of Science and Technology Department of Shaanxi Province,China(2022NY-074)the National Natural Science Foundation of China(41501255)+1 种基金the Xi'an Science and Technology Project(21NYYF0033)the Fundamental Research Funds for the Central Universities(SYJS202224,GK202206032).
文摘Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.
基金Supported by Special Fund of Lishui City for Public Interest(2021GYX11)Special Fund of Zhejiang Provincial Department of Finance for Basic Research and Development of Bamboo Charcoal-based Soil Conditioner(20180021)Key Research and Development Project of Zhejiang Province(2018C02031)。
文摘[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem.
基金the National Natural Science Foundation of China (Nos.30671207 and 40371063).
文摘Biolog, 16S rRNA gene denaturing gradient gel electrophoresis (DGGE), and phospholipid fatty acid (PLFA) analyses were used to assess soil microbial community characteristics in a chronosequence of tea garden systems (8-, 50-, and 90- year-old tea gardens), an adjacent wasteland, and a 90-year-old forest. Biolog analysis showed that the average well color development (AWCD) of all carbon sources and the functional diversity based on the Shannon index decreased (P 〈 0.05) in the following order: wasteland 〉 forest 〉 tea garden. For the DCCE analysis, the genetic diversity based on the Shannon index was significantly lower in the tea garden soils than in the wasteland. However, compared to the 90-year-old forest, the tea garden soils showed significantly higher genetic diversity. PLFA analysis showed that the ratio of Gram positive bacteria to Cram negative bacteria was significantly higher in the tea garden soils than in the wasteland, and the highest value was found in the 90-year-old forest. Both the fungal PLFA and the ratio of fungi to bacteria were significantly higher in the three tea garden soils than in the wasteland and forest, indicating that fungal PLFA was significantly affected by land-use change. Based on cluster analysis of the soil microbial community structure, all three analytical methods showed that land-use change had a greater effect on soil microbial community structure than tea garden age.
基金supported by the National Natural Science Foundation of China (No.30870221,20877093,50808172)the High Technology Research and Development Program (863) of China (No.2009X207209-004)
文摘Comparisons of microbial community structure, in eight filter media of zeolites, anthracite, shale, vermiculite, ceramic filter media, gravel, steel slag and bio-ceramic, were undertaken by analyzing the phospholipid fatty acid (PLFA) composition. A total of 20 fatty acids in the range of C18to C20 were determined but only 13 PLFAs were detected in steel slag. They consist of saturated fatty acids, branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The variation of fatty acids was revealed in the relative proportions of these fatty acids in different media. The aerobic prokaryotes were the predominant group in all media. The PLFA composition showed significant differences among the eight different media by Tukey's honestly test. It was found that steel slag was significantly different in the microbial community as compared to other filter media, probably due to its alkaline effluent. Steel slag alone is probably not a good choice of substratum in constructed wetlands. The principle components analysis (PCA) showed that zeolites, bio-ceramic, shale and vermiculite had a similar microbial community structure while steel slag and ceramic filter media were distinct from other media.
基金Project supported by the National Natural Science Foundation of China(No.30670391)the National Key Basic Researeh and Development Program of China(No.2004CB418505).
文摘With 110-d incubation experiment in laboratory, the responses of microbial quantity, soil enzymatic activity, and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whether certain biological and biochemical characteristics could serve as reliable indicators of petroleum hydrocarbon contamination in meadow-brown soil, and use these indicators to evaluate the actual ecological impacts of 50-year petroleum-refining wastewater irrigation on soil function in Shenfu irrigation area. Results showed that amendments of ~ 1000 mg/kg diesel fuel stimulated the growth of aerobic heterotrophic bacteria, and increased the activity of soil dehydrogenase, hydrogenperoxidase, polyphenol oxidase and substrate-induced respiration. Soil bacterial diversity decreased slightly during the first 15 d of incubation and recovered to the control level on day 30. The significant decrease of the colony forming units of soil actinomyces and filamentous fungi can be taken as the sensitive biological indicators of petroleum contamination when soil was amended with 〉15000 mg/kg diesel fuel. The sharp decrease in urease activity was recommended as the most sensitive biochemical indicator of heavy diesel fuel contamination. The shifts in community structure to a community documented by Sphingomonadaceae within a-subgroup of Proteobacteria could be served as a sensitive and precise indicator of diesel fuel contamination. Based on the results described in this paper, the soil function in Shenfu irrigation area was disturbed to some extent.
基金supported by the Strategic Technology Project of Chinese Academy of Sciences(XDA05060300)the Science and Technology Research and Development Program of Shaanxi ProvinceChina(2011KJXX63)
文摘The Loess Plateau in China is one of the most eroded areas in the world. Accordingly, vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem. Understanding the microbial community structure is essential for the sustainability of ecosystems and for the reclamation of degraded arable land. This study aimed to determine the effect of different vegetation types on microbial processes and community structure in rhizosphere soils in the Loess Plateau. The six vegetation types were as follows:two natural grassland (Artemisia capillaries and Heteropappus altaicus), two artificial grassland (Astragalus adsurgens and Panicum virgatum), and two artificial shrubland (Caragana korshinskii and Hippophae rhamnoides) species. The microbial community structure and functional diversity were examined by analyzing the phospholipid fatty acids (PLFAs) and community-level physiological profiles. The results showed that rhizosphere soil sampled from the H. altaicus and A. capillaries plots had the highest values of microbial biomass C, average well color development of carbon resources, Gram-negative (G-) bacterial PLFA, bacterial PLFA, total PLFA, Shannon richness, and Shannon evenness, as well as the lowest metabolic quotient. Soil sampled from the H. rhamnoides plots had the highest metabolic quotient and Gram-positive (G+) bacterial PLFA, and soil sampled from the A. adsurgens and A. capillaries plots had the highest fungal PLFA and fungal:bacterial PLFA ratio. Correlation analysis indicated a signiifcant positive relationship among the microbial biomass C, G- bacterial PLFA, bacterial PLFA, and total PLFA. In conclusion, plant species under arid climatic conditions signiifcantly affected the microbial community structure in rhizosphere soil. Among the studied plants, natural grassland species generated the most favorable microbial conditions.
基金supported by the National Science and Technology Support Program(2015BAD09B010102)International Science and Technology Cooperation Program of Fujian Agriculture and Forestry University(KXB16008A)
文摘To investigate the effects of biochar addition(1 or 3%)to the soil of a China fir plantation with or without litter,we conducted a 90-day incubation experiment.We also studied the C and N dynamics and the microbial community structure of the soil.In soil without litter,the application of biochar at a rate of 3%significantly decreased CO2 emissions,while addition of 1%biochar had no effect.Biochar application did not affect the net N mineralization rate but significantly reduced the NH4?concentration after 90 days.In litter-enriched soil,biochar application had no significant effect on total CO2 emissions;however,application of 3%biochar significantly reduced the net N mineralization rate.Biochar application to soil with or without litter immediately reduced the dissolved organic carbon(DOC)concentration independent of the application rate,which was primarily due to sorption of DOC by the biochar.Phospholipid fatty acid analysis demonstrated that both concentrations of added biochar to soil(with or without litter)altered the soil microbial community structure at the end of incubation,although the effect of biochar was not as strong as the effect of time or litter application.The effect of biochar addition alone on microbial community structure was inconsistent over time.Litter added to soil significantly increased fungi and reduced Gram-positive bacteria.In the presence of litter,biochar applied at both 1%and 3%significantly increased(p<0.05)the proportion of actinomycete only at day 90.Our results indicate biochar as a potentially effective measure for C sequestration in the test soil of a China fir plantation,even in the presence of litter.
基金supported by the National Natural Science Foundation of China(Grants No.51378175 and 41323001)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.20145028212)
文摘Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) method was used to analyze the variation of the microbial community structure in the control and nicotinecontaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine- contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.
基金The National Natural Science Foundation of China(No.50909019,51479034)the Fundamental Research Funds for the Central Universities(No.2242019K40064)。
文摘To investigate the effects of silver nanoparticles(Ag NPs)and low temperature double-pressure on the wastewater treatment efficacy and the microbial community structure of constructed wetlands,a pilot-scale vertical flow constructed wetland was set up to treat synthetic wastewater under laboratory conditions.By measuring the effluent concentration of ammonia nitrogen(NH_(4)^(+)-N),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(COD),and the diversity,richness,and community structure of microorganisms of the upper and lower soil layers in the wetland,the nutrient removal effect of the constructed wetland and the changes in the microflora of the soil layer were studied.The results reveal that the correlation coefficients between the removal rates of TN and NH_(4)^(+)-N and the temperature are 0.463 and 0.692,respectively,indicating a significant positive correlation.From the warm to the cold season,both the diversity and richness of microorganisms in the lower soil layer of wetlands are inhibited under the double-pressure of Ag NPs and low temperature,and the abundances of the denitrogenation functional bacteria such as Candidatus nitrososphaera,Sulfuritalea,Anaeromyxobacter,Candidatus solibacter,Nitrospira,and Zoogloea are altered.Low temperature and Ag NPs exposure can thus affect the wastewater treatment performance of constructed wetlands,possibly because of the seasonal changes of the microflora.
基金Project(2017zzts382)supported by Central South University Postgraduate Independent Exploration and Innovation,ChinaProject(2014jpkc003)supported by Central South University Graduate Excellent Course,China+1 种基金Project(2015JJ2165)supported by Hunan Provincial Natural Science Foundation of ChinaProject(165611031)supported by Central South University Fundamental Research Funds Special Funding,China。
文摘The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans)was used to leach three kinds of chalcopyrites with different iron-sulfur ratios.After 36 d of leaching,the chalcopyrite with iron-sulfur ratio of about 1:1 achieved the highest copper extraction(69.62%).In the early stage,iron oxidizing bacteria predominated,and the expression of rus and rio was 8 times higher than that in the late stage.In the late stage,sulfur oxidizing bacteria predominated,and the expression of tetH and HdrAB was 4 times higher than that in the early stage.Furthermore,the three bioleaching systems above were added with elemental sulfur(3 g/L);the chalcopyrite with iron-sulfur ratio of about 2:1 achieved the highest copper extraction(80.63%).The results suggest that the energy metabolism structure of the microbial community could be changed by changing the iron-sulfur ratio during the leaching process for improving the leaching efficiency of chalcopyrite.
基金supported by the National Natural Science Foundation of China (31171879 and 31000863)the Special Fund for Agro-Scientific Research in the Public Interest, China (201203098)
文摘The aim of this work was to assess the effect of applying three different doses of fluxapyroxad on microbial activity, community structure and functional diversity as measured by respiration, microbial biomass C, phospholipid fatty acid (PLFA) and community-level physiological profiles (CLPPs). Our results demonstrated that substrate-induced respiration (on day 15) and microbial biomass C (on days 7 and 15) were inhibited by fiuxapyroxad, but stimulation was observed thereafter. In contrast, fluxapyroxad addition increased the basal respiration and metabolic quotients (qCO2) and respiratory quotients (QR). Analysis of the PLFA profiles revealed that the total and bacterial biomass (both Gram-positive bacteria (GP) and Gram-negative bacteria (GN)) were decreased within the initial 15 days, whereas those as well as the GN/GP ratio were increased at days 30 and 60. Fluxapyroxad input decreased the fungi biomass but increased the bacteria/fungi ratio at all incubation time. Moreover, high fluxapyroxad input (75 mg fluxapyroxad kg-1 soil dry weight) increased the microbial stress level. A principal component analysis (PCA) of the PLFAs revealed that fluxapyroxad treatment significantly shifted the microbial community structure, but all of the observed effects were transient. Biolog results showed that average well color development (AWCD) and functional diversity index (H′) were increased only on day 60. In addition, the dissipation of fluxa- pyroxad was slow in soil, and the degradation half-lives varied from 158 to 385 days depending on the concentration tested.
基金funded by the National Natural Science Foundation of China(NSFC31301843)the National Nonprofit Institute Research Grant of Chinese Academy of Agricultural Sciences(IARRP-202-5)
文摘Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.
基金Wildlife Conservation and Management of National Forestry Bureau of China
文摘The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea(Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis(PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by p H on the Changbai Mountains, besides p H, other soil features such as NO3–-N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.
基金the National Natural Science Foundation of China (No.31960044)the Department of Science and Technology Foundation of Guizhou Province, China [DSTFGC (2019)] for financial support。
文摘To evaluate soil environmental quality of introduced new crops and other traditional crops,and to understand the importance of response of soil microbial community to heavy metal stress,rhizosphere soil samples of different land use types(Sphagnum farming,rice field,grassland and bare land) in Dading Village,Duyun City,Guizhou Province of China were selected as research objects.The differences of soil chemical properties,heavy metal concentration and microbial community among different land use types were compared.The abundance and structural diversity of microbial communities in soil samples were analyzed by 16S rDNA sequencing,the relationship between soil pollution characteristics and microbial community in farmland was studied.The results showed that the different land use types planting different agricultural products under the same growing environment were subject to different heavy metal pollution.Soil chemical properties and heavy metals had significant effects on the soil microbial community.Proteobacteria,Actinobacteriota and Acidobacteriota were the most dominant groups of bacteria.The soil microorganisms responded more actively to the variability of pH,SOM and AK contents,although the variability was not high.With the increase of pH value,the abundance of the dominant species Proteobacteria also increased.Verrucomicrobiota had a better tolerance to the heavy metal Hg.Verrucomicrobiota and Firmicutes had strong resistance to the heavy metal Cd.These results deepen our understanding of the changes and aggregation of microorganisms under different land use patterns in heavy-metal contaminated farmland soils.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2007AA06Z329)the Science and Technology Project of Zhejiang Province(No.2007C23036)+1 种基金the Internation-al Cooperation Project in Science and Technology of Zhejiang Province(No.2008C14038)the National Science Foundation of Zhejiang Provience,China(No.19808)
文摘To investigate the influence of bensulfuron-methyl(BSM)on culturable microbial quantities and unculturable microbial community structures,conventional and molecular biological methods were employed in five BSM treated soils with three replications,respectively. The results obtained with traditional culture-dependent methods showed that a low-level of BSM had slight and transient effects on culturable microorganisms;nevertheless,high concentration of BSM resulted in a dramatic decrease in bacterial colony fo...
基金The National Natural Science Foundation of China under contract No.41121064the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406403the Science Foundation for Post Doctorate Research from the Chinese Academy of Sciences under contract No.2012M511072
文摘Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its relationship with environmental factors, we applied Roche 454 sequencing of 16 S r DNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities' richness, compositions and structures as well as taxonomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups; while the archaeal community is dominated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota(96.66%) and methanogenic Euryarchaeota(3.21%). This study describes the microbial diversity in the Arctic deep marine sediment(〉3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.
基金Sponsored by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment(Grant No.0804K001)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2008.044)
文摘The conventional fixed-bed biofilm process has disadvantages of easily blocked,high headloss and short operation cycle.For overcoming these disadvantages,a multi-stage biofilm reactor(MSBFR),in which the lightweight floating filter was dominant,was set up and operated.For detail investigation of the system when treating municipal wastewater,the succession characteristic of microbial community was analyzed by polymerase chain reaction(PCR)-Denaturing Gradient Gel Electrophoresis(DGGE)method.The results showed that the process had high efficiency to removal COD,SS and NH4+-N.The concentration of COD,SS and NH4-N in effluent were maintained lower than 40 mg/L,5 mg/L and 2 mg/L even though the concentration of COD,SS and NH4+-N in influent were 232-663 mg/L,105-245 mg/L and 23.7-62.7 mg/L,respectively,and the empty bed retention time was 3 h.Furthermore,biofilm samples taken from the column 2nd in height were analyzed by PCR-DGGE.The result of PCR-DGGE analysis showed that the microbial community had a little change in height and the dominant groups were Paracoccus sp.,Lactobacillus delbrueckii,Pseudomonas sp.and Bacteroidetes bacterium.
基金supported by the National Natural Science Foundation of China(41471437)the National Key R&D Program of China(2016YFA0600801,2017YFC0504504)+1 种基金the West Light Foundation of the Chinese Academy of Science(XAB2016A04)the Key R&D Program of Ningxia Hui Autonomous Region,China(2022BBF02033)。
文摘Robinia pseudoacacia L.(RP)restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China,but ecological problems have also occurred due to RP restoration,such as reduced soil moisture.Further,it is still uncertain how microbial diversity,composition and assembly processes change with RP restoration in semi-arid regions.Therefore,amplicon sequencing of small subunit ribosomal ribonucleic acid(16S rRNA)and internal transcribed spacer(ITS)genes was performed to study soil bacterial and fungal diversity,composition and assembly processes at four study sites with different stand ages of RP plantations(Y10,RP plantation with stand ages less than 10 a;Y15,RP plantation with stand ages approximately 15 a;Y25,RP plantation with stand ages approximately 25 a;and Y40,RP plantation with stand ages approximately 40 a)along a 40-a chronosequence on the Loess Plateau.The diversity of soil bacteria and fungi increased significantly during the restoration period from 10 to 15 a(P<0.05).However,compared with Y15,bacterial diversity was lower at Y25 and Y40,and fungal diversity remained stable during the restoration period between 25 and 40 a.The relative abundances of Proteobacteria and Ascomycota increased during the restoration period from 10 to 15 a.Conversely,after 15 a of restoration,they both decreased,whereas the relative abundances of Actinomycetes,Acidobacteria and Basidiomycota gradually increased.The variations in soil bacterial communities were mainly related to changes in soil total nitrogen,nitrate nitrogen and moisture contents,while soil fungal communities were mainly shaped by soil organic carbon and nitrate nitrogen contents.Bacterial communities were structured by the heterogeneous selection and stochastic process,while fungal communities were structured primarily by the stochastic process.The RP restoration induced an increase in the relative importance of heterogeneous selection on bacterial communities.Overall,this study reveals the changes in microbial diversity,community composition and assembly processes with RP restoration on the Loess Plateau and provides a new perspective on the effects of vegetation restoration on soil microbial communities in semi-arid regions.
文摘A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and nonrhizospheric soil. The results showed that the pyrene concentrations in soil decreased with time extending and were very significant less in rhizospheric soil grown with maize plants (p〈0.01). At the end of the 45-day experiment, the ratios of pyrene degradation were 61.25% and 35.58% in rhizospheric and nonrhizospheric soil, respectively. Maize enhanced the decrease of pyrene concentration and increased the degradation rate of pyrene in soil. During the experimental period, a relatively large amount of microbial biomass biomass (Craig), basal soil respiration, the Cmic/Corg ratio, enzyme (urease, dehydrogenase, polyphenol oxidase, and catalase) activities were detected in rbizospheric soil. Metabolic quotient was lower in rhizospheric soil than in nonrhizospheric soil at the whole experimental period. Soil microbial communities in rhizospheric soil and nonrhizospheric soil were characterized using fatty acid methyl ester (FAME) analysis. Fatty acid profiles demonstrated that soil microbial community structure was significantly altered in pyrene contaminated soil with maize. Fatty acid indicators for fungi and the ratio of fungi to bacteria significant increased, and fatty acid indicators for bacteria and Gram-negative bacteria significantly decreased. The effect gradually increased and got very significant (p〈0.01) with the time extending. The differences of fatty acid indicators for arbuscular mycorrhizal fungi (AMF), Gram-positive bacteria and actinomycetes gradually increased, and the differences reached significant level (p〈0.05) at the end of the experiment (45 d).
基金supported by the National Natural Science Foundation of China(Nos.42177099 and 91951108)the Key R&D plan of Ningxia Hui Autonomous Region(No.2019BFG02032)the CAS International Partnership Program(No.121311KYSB20200017).
文摘With the rapid expansion of livestock production,the amount of livestock wastewater accumulated rapidly.Lack of biodegradable organic matter makes denitrification of livestock wastewater after anaerobic digestion more difficult.In this study,Myriophyllum aquaticum constructed wetlands(CWs)with efficient nitrogen removal performance were established under different carbon/nitrogen(C/N)ratios.Analysis of community composition reveals the change of M.aquaticum CWs in microbial community structure with C/N ratios.The proportion of Proteobacteria which is one of the dominant phyla among denitrifier communities increased significantly under low C/N ratio conditions.Besides,to obtain cultivable denitrifier that could be added into CWs in situ,33 strains belonging to phylum Proteobacteria were isolated from efficient M.aquaticum CWs,while the best-performing denitrification strain M3-1 was identified as Bacillus velezensis JT3-1(GenBank No.CP032506.1).Redundancy analysis and quadratic models showed that C/N ratio had significant effects on disposal of nitrate(NO_(3)^(−)-N)and the strains isolated could perform well in denitrification when C/N ratio is relatively low.In addition,they have relatively wide ranges of carbon sources,temperature and a high NO_(3)^(−)removal rate of 9.12 mg/(L·hr)at elevated concentrations of 800 mg/L nitrate.Thus,strains isolated from M.aquaticum CWs with low C/N ratio have a practical application value in the treatment of nitrate-containing wastewater.These denitrifying bacteria could be added to CWs to enhance nitrogen removal efficiency of CWs for livestock wastewater with low C/N ratio in the future.