期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Abiotic-Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels 被引量:5
1
作者 Jiansheng Li Yao Tian +5 位作者 Yinuo Zhou Yongchao Zong Nan Yang Mai Zhang Zhiqi Guo Hao Song 《Transactions of Tianjin University》 EI CAS 2020年第4期237-247,共11页
Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to ... Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems. 展开更多
关键词 CO2 conversion Abiotic-biological hybrid systems microbial electrosynthesis systems Photosynthetic semiconductor biohybrid systems
下载PDF
甲烷化抑制剂在微生物电化学合成乙酸系统中的生物抑制效应 被引量:3
2
作者 戚玉娇 BRIDIER Arnaud +3 位作者 DESMOND LE QUEMENERElie 吕凡 何品晶 BOUCHEZ Théodore 《化工学报》 EI CAS CSCD 北大核心 2016年第5期2033-2040,共8页
研究了利用2-溴乙烷磺酸钠(BES)选择性抑制产甲烷菌,从而提高微生物电化学系统合成乙酸产率的可行性,并对比了BES添加前后阴极室微生物菌群结构的变化。结果表明,厌氧混合菌接种物未经BES处理时甲烷是电化学系统CO_2还原的主导产物,最... 研究了利用2-溴乙烷磺酸钠(BES)选择性抑制产甲烷菌,从而提高微生物电化学系统合成乙酸产率的可行性,并对比了BES添加前后阴极室微生物菌群结构的变化。结果表明,厌氧混合菌接种物未经BES处理时甲烷是电化学系统CO_2还原的主导产物,最大生成速率达0.95 mmol·L^(-1)·d^(-1),8 d反应时间甲烷中电子回收率达55.0%,16S r RNA测序结果显示固态阴极的主要菌群为Methanobacteriaceae。BES的添加基本抑制了产甲烷菌的活动,使得乙酸成为主导产物,其合成速率最高达2.22 mmol·L^(-1)·d^(-1),系统总电子回收率达67.3%。Rhodocyclaceae(15.1%),Clostridiaceae(11.9%)、Comamonadaceae(11.1%)和Sphingobacteriales(11.0%)为主要菌群。研究结果表明了微生物电化学合成系统中抑制甲烷生成对调控微生态结构,从而调控电化学终产物的重要性。 展开更多
关键词 微生物电化学合成系统 二氧化碳还原 乙酸合成 2-溴乙烷磺酸钠(BES) 甲烷化抑制剂 控制 选择性 生物过程
下载PDF
阴极电势对微生物电合成系统还原CO2合成有机物性能的影响 被引量:1
3
作者 柳焜 王黎 +2 位作者 胡宁 陈小进 廖梦根 《化工环保》 CAS CSCD 北大核心 2020年第2期169-174,共6页
采用微生物电合成系统(MES)还原CO2合成有机物,从微生物菌群、有机物积累量、库伦效率、电化学分析等多个角度研究了阴极电势对MES还原CO2合成有机物性能的影响。实验结果表明:阴极电势为-0.70 V时,甲酸和乙酸的积累量均最大(分别为1.55... 采用微生物电合成系统(MES)还原CO2合成有机物,从微生物菌群、有机物积累量、库伦效率、电化学分析等多个角度研究了阴极电势对MES还原CO2合成有机物性能的影响。实验结果表明:阴极电势为-0.70 V时,甲酸和乙酸的积累量均最大(分别为1.554 mmol/L和2.754 mmol/L),系统的总库伦效率最大(为81.42%);在MES中,醋杆菌(Acetobacterium sp.)、假丝酵母菌(Candida sp.S)、地杆菌(Geobacter sp.)为优势菌种。 展开更多
关键词 微生物电合成系统 阴极电势 CO2 合成 有机物 库伦效率
下载PDF
还原氧化石墨烯/泡沫铜电极用于微生物电合成系统中二氧化碳合成有机物 被引量:1
4
作者 廖梦根 王黎 +2 位作者 柳焜 胡宁 余杨 《化工环保》 CAS CSCD 北大核心 2021年第4期463-468,共6页
采用氧化石墨烯涂覆泡沫铜并还原改性,合成了还原氧化石墨烯/泡沫铜电极,用于微生物电合成系统(MES)中CO_(2)合成有机物,考察了其电化学性能和有机物合成性能。实验结果表明:将改性的泡沫铜阴极用于MES还原CO_(2),在施加的-0.8 V阴极电... 采用氧化石墨烯涂覆泡沫铜并还原改性,合成了还原氧化石墨烯/泡沫铜电极,用于微生物电合成系统(MES)中CO_(2)合成有机物,考察了其电化学性能和有机物合成性能。实验结果表明:将改性的泡沫铜阴极用于MES还原CO_(2),在施加的-0.8 V阴极电势下,产生的乙酸和丁酸的最终质量浓度分别达到265.0 mg/L和122.5 mg/L,与改性前相比分别增加了8%和35%;该系统阴极表面上的主要优势细菌属于瘤球菌科(Ruminococcaceae)和梭菌科(Clostridiaceae),丰度分别增加了0.98倍和0.31倍。 展开更多
关键词 微生物电合成系统 泡沫铜 还原氧化石墨烯 CO2 有机物
下载PDF
罗尔斯通氏菌电合成还原CO_(2)产聚羟基丁酸 被引量:1
5
作者 丛畅 张康 +1 位作者 宋天顺 谢婧婧 《南京工业大学学报(自然科学版)》 CAS 北大核心 2022年第6期699-706,共8页
减少大气中CO_(2)含量,缓解温室效应,并实现CO_(2)的高效利用已成为世界共同关注的问题。本文以罗尔斯通氏菌(Ralstonia eutropha)为生物催化剂,构建微生物电合成系统(MES),通过外加一定的电压,将CO_(2)直接转变为高附加值的聚羟基丁酸(... 减少大气中CO_(2)含量,缓解温室效应,并实现CO_(2)的高效利用已成为世界共同关注的问题。本文以罗尔斯通氏菌(Ralstonia eutropha)为生物催化剂,构建微生物电合成系统(MES),通过外加一定的电压,将CO_(2)直接转变为高附加值的聚羟基丁酸(PHB),并进一步研究氮源和电解质浓度对MES性能的影响。结果表明:在电压4.0 V的条件下细菌生长速率最快,而4.5 V电压下由于H_(2)大量积累,从而抑制微生物的生长。当氮源质量浓度为0.2 g/L时,PHB产量最大(菌液中质量浓度为191.2 mg/L),进一步提高氮源浓度,PHB产量反而下降,说明限氮有利于PHB的合成。电解质浓度的提高,会使得体系中电流和阴极电势增大,但是也会提高盐度以及有利于H_(2)的累积,从而影响细菌生长,适宜的电解质浓度为36 mmol/L。 展开更多
关键词 微生物电合成 罗尔斯通氏菌 CO_(2) 聚羟基丁酸 H_(2)浓度
下载PDF
微生物电合成甲烷技术的研究进展 被引量:1
6
作者 孟宏宇 赵帅杰 吴云 《化工时刊》 CAS 2022年第12期20-26,共7页
微生物电合成技术近年来已经成为环境、能源等领域的一项研究热点。作者系统总结和阐述了微生物电合成甲烷的研究结果,主要包括:微生物电合成系统的基本原理,对不同电极的改性研究和材料选择,不同运行条件对微生物电合成系统的影响和微... 微生物电合成技术近年来已经成为环境、能源等领域的一项研究热点。作者系统总结和阐述了微生物电合成甲烷的研究结果,主要包括:微生物电合成系统的基本原理,对不同电极的改性研究和材料选择,不同运行条件对微生物电合成系统的影响和微生物电合成技术与厌氧发酵技术的耦合研究。 展开更多
关键词 微生物电合成系统 甲烷 厌氧发酵系统 二氧化碳
下载PDF
微生物光电还原CO_(2)合成乙酸对外电压的响应机制 被引量:1
7
作者 周美洲 骆海萍 +2 位作者 曾翠平 刘广立 张仁铎 《中国环境科学》 EI CAS CSCD 北大核心 2022年第2期907-913,共7页
以TiO_(2)光阳极结合自养型生物阴极,构建双室微生物光电合成(MPES)系统,以光能作为主要的能量来源,探究MPES还原CO_(2)合成乙酸的性能及其限制因素.结果表明,光阳极取代纯电化学阳极显著降低了MPES生物阴极对外电压的需求.MPES能持续... 以TiO_(2)光阳极结合自养型生物阴极,构建双室微生物光电合成(MPES)系统,以光能作为主要的能量来源,探究MPES还原CO_(2)合成乙酸的性能及其限制因素.结果表明,光阳极取代纯电化学阳极显著降低了MPES生物阴极对外电压的需求.MPES能持续稳定运行,平均产乙酸速率为(1.18±0.11)mmol/(L·d),法拉第效率为45.75%±3.97%.光阳极驱动阴极产生氢气,推测阴极微生物倾向于利用氢转移的方式来进行电子传递.外加电压通过影响光阳极的给电子能力从而对MPES的性能产生显著的影响,当外电压从0.4V升高至0.6V时,MPES的电流,乙酸产量和法拉第效率都显著提高,系统的性能主要受限于阳极.当外电压高于0.6V,系统电流,乙酸产量的增速减缓,法拉第效率在外加电压0.8V时达到最大值,随后下降,表明生物阴极的得电子能力已经达到饱和,此时MPES的性能主要受限于阴极.作为电子传递中间体,H_(2)的不完全利用是法拉第效率没有随着外电压的增加进一步提升的原因. 展开更多
关键词 微生物电合成(MES) 光阳极 生物阴极 产乙酸 外电压
下载PDF
光电与微生物结合的生物杂化光合体系生产聚β-羟基丁酸酯的研究进展
8
作者 张甜 王君婷 许梦莹 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期941-949,共9页
人工光合系统具有较高的光吸收率,但难以合成具有高附加值的化合物.微生物则可以利用自身的促进自我修复与复制、具有高特异性的生物酶催化合成各种高分子化合物.生物杂化光合体系结合两者优点,为化学品的合成提供了一条清洁高效、经济... 人工光合系统具有较高的光吸收率,但难以合成具有高附加值的化合物.微生物则可以利用自身的促进自我修复与复制、具有高特异性的生物酶催化合成各种高分子化合物.生物杂化光合体系结合两者优点,为化学品的合成提供了一条清洁高效、经济、可持续的发展途径.近年来,有科学家利用生物杂化光合体系生产生物可降解材料聚β-羟基丁酸酯,取得了初步成效.以下从光催化剂协同微生物杂化光合体系和微生物电合成体系两个方面,介绍了生物杂化光合体系生产聚β-羟基丁酸酯的研究进展,研究了利用该体系生产聚β-羟基丁酸酯的现存问题,并对其未来发展方向进行了展望. 展开更多
关键词 生物杂化光合体系 聚Β-羟基丁酸酯 光催化 微生物电合成
下载PDF
生物电化学系统固定二氧化碳同时产生乙酸和丁酸 被引量:11
9
作者 张尧 张闻杰 +3 位作者 蒋永 苏敏 陶勇 李大平 《应用与环境生物学报》 CAS CSCD 北大核心 2014年第2期174-178,共5页
生物电化学系统用于微生物电合成,可原位利用污水中的能量将二氧化碳固定,并生产有机物.通过构建生物电化学系统,利用混合菌作电催化剂还原二氧化碳生成乙酸和丁酸.设定阴极电势-0.75 V(vs Ag/AgCl),10 d的反应周期内,乙酸最大积累浓度... 生物电化学系统用于微生物电合成,可原位利用污水中的能量将二氧化碳固定,并生产有机物.通过构建生物电化学系统,利用混合菌作电催化剂还原二氧化碳生成乙酸和丁酸.设定阴极电势-0.75 V(vs Ag/AgCl),10 d的反应周期内,乙酸最大积累浓度为251.89 mg/L;丁酸从第3天开始生成,最大积累浓度为89.42 mg/L.系统总电子回收率可达85.04%.电化学分析表明生物阴极具有良好的催化活性.PCR-DGGE分析生物阴极主要菌群为醋酸杆菌属(Acetobacterium)和拟杆菌属(Bacteroides).本研究证明了生物阴极具有以二氧化碳为原始底物合成乙酸,并进一步延伸碳链合成中链脂肪酸的能力,对进一步开发微生物电合成技术具有重要参考价值. 展开更多
关键词 生物电化学系统 微生物电合成 二氧化碳 乙酸 丁酸
原文传递
电活性生物膜:形成、表征及应用 被引量:7
10
作者 唐家桓 刘毅 +1 位作者 周顺桂 袁勇 《应用与环境生物学报》 CAS CSCD 北大核心 2014年第6期1096-1103,共8页
电活性生物膜(Electrochemically active biofi lms,EABs)是一类能够直接与胞外固态载体(铁氧化物、腐殖质及电极等)进行电子交换的生物膜.EABs的电子传递特性,赋予了它在环境、能源和化工等领域的广泛应用前景,已成为当前国际研究热点... 电活性生物膜(Electrochemically active biofi lms,EABs)是一类能够直接与胞外固态载体(铁氧化物、腐殖质及电极等)进行电子交换的生物膜.EABs的电子传递特性,赋予了它在环境、能源和化工等领域的广泛应用前景,已成为当前国际研究热点.本文以革兰氏染色法为依据,分别介绍了腐败希瓦氏菌(Shewanella putrefaciens)、硫还原地杆菌(Geobacter sulfurreducens)和丁酸梭菌(Clostridium butyricum EG3)为代表的阴性和阳性电活性微生物;在普通生物膜的形成基础上,讨论了EABs的两种主要培养方法;分别从EABs输出电子与接受电子的角度,详细论述了电活性微生物与胞外载体的电子传递机制;重点阐述了利用电化学、光谱学、电子显微镜、分子生态学等多技术手段表征单个电活性微生物和整个EABs的形态、结构,以及所揭示的胞外电子传递机制和相关影响因子;对EABs在电能输出、污染物治理、有价品合成等方面应用作了详细介绍.最后,建议对EABs的研究建立一个统一、标准的表征方法,同时应重点研究EABs接受电子的传递机制.对这些机理的深入了解,可使得EABs在污染物治理以及有机物的电合成等方面应用早日实现规模化、产业化生产. 展开更多
关键词 电活性生物膜 电活性微生物 胞外电子传递 生物电化学系统 微生物电合成
原文传递
微生物电合成-电能驱动的CO_2固定 被引量:7
11
作者 朱华伟 张延平 李寅 《中国科学:生命科学》 CSCD 北大核心 2016年第12期1388-1399,共12页
CO_2代表着地球上最广泛的可再生资源,通过生物固碳途径将CO_2转化为有机物,是生产生物燃料和生物基化学品的重要方向,由于能量供给不足和微生物自身生理代谢的限制,生物固碳效率还有待提高.利用电能驱动微生物还原CO_2是实现CO_2高效... CO_2代表着地球上最广泛的可再生资源,通过生物固碳途径将CO_2转化为有机物,是生产生物燃料和生物基化学品的重要方向,由于能量供给不足和微生物自身生理代谢的限制,生物固碳效率还有待提高.利用电能驱动微生物还原CO_2是实现CO_2高效转化的新策略,被称为微生物电合成.本文从电合成微生物种类、胞外电子传递、电极材料等方面综述了微生物电合成的研究进展,并对微生物电合成的未来研究方向进行了展望. 展开更多
关键词 微生物电合成 CO2固定 生物电化学系统 胞外电子传递 电极材料
原文传递
微生物电合成系统还原二氧化碳产甲烷的电势依赖性 被引量:3
12
作者 鲍白翎 杨厚云 +1 位作者 苏馈足 穆杨 《应用与环境生物学报》 CAS CSCD 北大核心 2017年第6期968-973,共6页
二氧化碳(CO_2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO_2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO_2产甲烷的影响.当阴极电势从-0.70 V降... 二氧化碳(CO_2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO_2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO_2产甲烷的影响.当阴极电势从-0.70 V降低到-0.90 V vs Ag/Ag Cl时,MES产甲烷的量和速率都在增加,最大的产甲烷量和速率分别达到了0.265 mol/m^2和0.025 mmol/h.与此同时,MES的电流密度从0.002 A/m^2增加到0.18 A/m^2,阴极产甲烷的库伦效率在49%和90%之间.当阴极电势更负时,MES阴极几乎不产甲烷.扫描电镜分析(SEM)表明,有多种不同形态的微生物吸附在阴极碳毡上,它们的形态主要呈杆状和球状.16S r DNA测序分析表明Methanobacterium是MES阴极生物膜上优势的产甲烷菌.本研究表明,微生物电合成系统还原CO_2产甲烷的阴极电势必须控制在适当的范围内,才能高效地还原CO_2产甲烷. 展开更多
关键词 微生物电合成系统(MES) 二氧化碳 甲烷 阴极电势 Methanobacterium
原文传递
羧基改性阴极对微生物电合成系统产乙酸性能的影响机制 被引量:5
13
作者 祁家欣 曾翠平 +3 位作者 骆海萍 刘广立 张仁铎 卢耀斌 《环境科学》 EI CAS CSCD 北大核心 2019年第5期2302-2309,共8页
微生物电合成系统(microbial electrosynthesis systems,MESs)可利用微生物将二氧化碳转化为有价化合物,有望实现温室气体的资源化利用,然而,其合成效率仍需进一步提高.本研究通过电化学还原重氮盐反应将特定的官能团—COOH接枝到碳布... 微生物电合成系统(microbial electrosynthesis systems,MESs)可利用微生物将二氧化碳转化为有价化合物,有望实现温室气体的资源化利用,然而,其合成效率仍需进一步提高.本研究通过电化学还原重氮盐反应将特定的官能团—COOH接枝到碳布电极表面,探究改性阴极对于MESs性能的影响.结果发现,经—COOH改性的阴极材料亲水性显著提高,而循环伏安扫描电流变弱. MESs在启动阶段性能差异最大,运行48 h,改性组CA-H、CA-M、CA-L的产氢速率是CK的21. 45、28. 60和22. 75倍;运行120 h,CA-H、CA-M和CA-L的乙酸累积浓度是CK的2. 01、2. 43和1. 44倍. MESs运行324 h后,各阴极的电化学活性无明显差异,生物膜蛋白量无明显差异(~0. 47 mg·cm^(-2)).阴极生物膜的群落结构分析发现,属水平上由Acetobacterium、norank_p_Saccharibacteria和Thioclava占据主导,总相对丰度占到59. 6%到82. 1%;各阴极之间产乙酸功能菌Acetobacterium的相对丰度差别不大(31. 3%~40. 1%),而消耗乙酸的norank_p_Saccharibacteria属在CA-H、CA-M、CA-L和CK的相对丰度分别为:16. 1%、24. 6%、31. 1%和37. 5%.羧基改性阴极对MESs的启动阶段影响较大,可为MESs的快速启动提供新的思路. 展开更多
关键词 微生物电合成系统(mess) 阴极 羧基改性 生物膜 产乙酸
原文传递
阴极大小对微生物电合成系统还原二氧化碳产有机物的影响
14
作者 张鹏程 王黎 +2 位作者 陈小进 胡宁 李洋洋 《环境工程学报》 CAS CSCD 北大核心 2018年第12期3531-3539,共9页
利用微生物电合成系统(microbial electrosynthesis system,MES)还原CO_2合成有附加值的有机物是环境领域的热门研究方向。使用微生物电合成系统,驯化富集具有电化学活性的阴极功能微生物,通过调整阴极的大小,评价其对CO_2还原的影响。... 利用微生物电合成系统(microbial electrosynthesis system,MES)还原CO_2合成有附加值的有机物是环境领域的热门研究方向。使用微生物电合成系统,驯化富集具有电化学活性的阴极功能微生物,通过调整阴极的大小,评价其对CO_2还原的影响。设定阴极电势-0.8 V (vs Ag/AgCl),保持阳极面积为32 cm^2,调整阴极面积大小。在64 cm^2的阴极面积下,MES可以获得最大的有机物产量和最佳性能,电流密度可达到2.03 A·m^(-2),乙酸、丁酸的最大积累量分别为262.04 mg·L^(-1)和87.63 mg·L^(-1),总库伦效率达到91%。扫描电镜SEM分析表明,阴极碳毡上菌体数量较多,多为杆状菌和球菌。高通量菌群分析表明,Clostridium、Butyribacterium和Geobacter是MES阴极生物膜上的优势菌属,其丰度分别占总菌群的48.13%、7.8%和8.2%。在保证较小阳极面积的同时,适当增大阴极面积,确实可以提高MES还原CO_2合成有机物的产量及提升系统的库伦效率。 展开更多
关键词 微生物电合成系统 二氧化碳 阴极大小 乙酸 丁酸
原文传递
改性蓝藻生物炭促进微生物电合成系统产乙酸的机制研究
15
作者 章湝 姜谦 +4 位作者 吴平 张超 孙慧敏 张衍 刘和 《环境科学学报》 CAS CSCD 北大核心 2023年第5期125-137,共13页
微生物电合成系统(MES)是一种以微生物作为催化剂,在阴极电驱动下还原CO_(2)产生简单化学品的新型碳捕获利用技术.为探究蓝藻生物炭在MES中的添加强化乙酸合成的潜力,本研究通过不同蓝藻生物炭的投加,检测乙酸合成性能及电子回收率,观... 微生物电合成系统(MES)是一种以微生物作为催化剂,在阴极电驱动下还原CO_(2)产生简单化学品的新型碳捕获利用技术.为探究蓝藻生物炭在MES中的添加强化乙酸合成的潜力,本研究通过不同蓝藻生物炭的投加,检测乙酸合成性能及电子回收率,观察阴极微生物分布及形态特征,分析微生物群落结构特征,探究蓝藻生物炭添加对乙酸合成的影响及机制.结果表明,添加蓝藻生物炭(ABC)和过氧化氢改性蓝藻生物炭(ABC-H2O_(2)),使MES乙酸产量分别增加了33.8%和77.0%,电子回收率均有所上升,且ABC-H2O_(2)组电子回收率高于ABC组.分析蓝藻生物炭电子传递性能和氧化还原活性表明,经过氧化氢改性后的蓝藻生物炭表面含氧官能团数量增加,增强了电子传递能力及氧化活性,有利于微生物通过蓝藻生物炭介导进行间接电子传递.在微生物群落结构方面,蓝藻生物炭的添加降低了产乙酸菌丰度,但提高了微生物群落中电活性微生物和产氢微生物的丰度,使得产乙酸微生物获得更多的电子,实现乙酸合成性能增强.本研究揭示了蓝藻生物炭,特别是改性蓝藻生物炭对MES乙酸合成的强化作用,为强化MES还原CO_(2)产乙酸提供新的思路. 展开更多
关键词 微生物电合成系统 蓝藻生物炭 乙酸合成 微生物群落 产乙酸菌
原文传递
吸收胞外电子的电活性微生物 被引量:5
16
作者 靖宪月 陈姗姗 周顺桂 《微生物学报》 CAS CSCD 北大核心 2018年第1期19-27,共9页
可吸收胞外电子的电活性微生物(Electroactive microorganisms,EAMs)可利用胞外固态载体的电子将二氧化碳或其他氧化态物质还原成胞外有机物、还原态无机物或自身生命活动所需的有机物。该类EAMs的出现拓宽了人们对微生物多样性的认识,... 可吸收胞外电子的电活性微生物(Electroactive microorganisms,EAMs)可利用胞外固态载体的电子将二氧化碳或其他氧化态物质还原成胞外有机物、还原态无机物或自身生命活动所需的有机物。该类EAMs的出现拓宽了人们对微生物多样性的认识,在生物质能合成、污染物治理与化学物质检测等方面具有重要的应用价值。本文介绍了代表性的可吸收胞外电子EAMs的物质转化与电能转化率等基本特性,重点阐述该类EAMs基于膜蛋白的直接吸收电子机制,及基于电子穿梭体的间接吸收电子机制,提出了其在微生物电合成系统与微生物传感器中的应用前景,并从EAMs机理研究、生物膜微观机制及工程应用的角度展望其今后的研究方向。 展开更多
关键词 电活性微生物 吸收电子机制 膜结合蛋白 电子穿梭体 电合成系统 微生物传感器
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部