Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to ...Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems.展开更多
二氧化碳(CO_2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO_2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO_2产甲烷的影响.当阴极电势从-0.70 V降...二氧化碳(CO_2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO_2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO_2产甲烷的影响.当阴极电势从-0.70 V降低到-0.90 V vs Ag/Ag Cl时,MES产甲烷的量和速率都在增加,最大的产甲烷量和速率分别达到了0.265 mol/m^2和0.025 mmol/h.与此同时,MES的电流密度从0.002 A/m^2增加到0.18 A/m^2,阴极产甲烷的库伦效率在49%和90%之间.当阴极电势更负时,MES阴极几乎不产甲烷.扫描电镜分析(SEM)表明,有多种不同形态的微生物吸附在阴极碳毡上,它们的形态主要呈杆状和球状.16S r DNA测序分析表明Methanobacterium是MES阴极生物膜上优势的产甲烷菌.本研究表明,微生物电合成系统还原CO_2产甲烷的阴极电势必须控制在适当的范围内,才能高效地还原CO_2产甲烷.展开更多
文摘Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems.
文摘二氧化碳(CO_2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO_2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO_2产甲烷的影响.当阴极电势从-0.70 V降低到-0.90 V vs Ag/Ag Cl时,MES产甲烷的量和速率都在增加,最大的产甲烷量和速率分别达到了0.265 mol/m^2和0.025 mmol/h.与此同时,MES的电流密度从0.002 A/m^2增加到0.18 A/m^2,阴极产甲烷的库伦效率在49%和90%之间.当阴极电势更负时,MES阴极几乎不产甲烷.扫描电镜分析(SEM)表明,有多种不同形态的微生物吸附在阴极碳毡上,它们的形态主要呈杆状和球状.16S r DNA测序分析表明Methanobacterium是MES阴极生物膜上优势的产甲烷菌.本研究表明,微生物电合成系统还原CO_2产甲烷的阴极电势必须控制在适当的范围内,才能高效地还原CO_2产甲烷.