This study aims to further enhance the oil recovery of reservoirs in the Zhong-2 Block of the Gudao Oilfield by identifying the most effective microbial-flooding activator systems and applying them in the field.We beg...This study aims to further enhance the oil recovery of reservoirs in the Zhong-2 Block of the Gudao Oilfield by identifying the most effective microbial-flooding activator systems and applying them in the field.We began by analyzing the structure of the reservoirs'endogenous microbial communities to understand the potential impact of microbial flooding.This was followed by determining commonly used activator systems based on their abilities to stimulate oil-displacement functional bacteria.Through laboratory experiments on oil displacement efficiency and sweep characteristics,we determined the optimal activator injection method(injection ratio)and the requisite bacterial concentration for maximal microbial-flooding efficacy.Finally,we selected the optimal activator systems and applied them to field tests.Our findings suggest the target block is highly receptive to microbial-flooding.In terms of performance,the activator systems ranked as No.3>No.4>No.1>No.2.Interestingly,a deep activator system,when compared to the top-performing No.3 system,exhibited a higher bacterial concentration peak and longer peaking duration.Optimal oil displacement effects were observed at a 1:4 vol ratio between the No.3 activator and deep activator systems,with bacterial concentrations of up to 106 cells/mL or above.Field tests with the selected activator systems,following a specific injection protocol,demonstrated a notable increase in oil production and a reduction in water cut.展开更多
[Objective] To screen out a microbial flocculant with good decolorization effect on methyl orange wastewater,and study the effect of different cultural conditions on decolorization effect of methyl orange.[Method] Abs...[Objective] To screen out a microbial flocculant with good decolorization effect on methyl orange wastewater,and study the effect of different cultural conditions on decolorization effect of methyl orange.[Method] Absorbance of methyl orange solution before and after decolorization was determined by spectrophotometer,and the decolorization rate was calculated to compare the effects of different cultural conditions on removal rate of methyl orange.[Result]An optimal actinomycete stain(F-1-2) was screened out,and the best cultural condition was as follows:with sucrose as carbon source and NaNO3 as nitrogen source,cultured in constant temperature oscillator at 150 r/min,30℃ for 72 h.Under the optimal condition,the removal rate against methyl orange could reach 68.4%.[Conclusion]Different culture conditions have great impact on decolorization effect of strain.展开更多
A high effective bioflocculant-producing strain named LB1 was isolated and screened from the leachate by routine micro- method. The strain was identified as genus Pseudomonas according to the morphologic and physiolog...A high effective bioflocculant-producing strain named LB1 was isolated and screened from the leachate by routine micro- method. The strain was identified as genus Pseudomonas according to the morphologic and physiological-biochemical characteristics of the strain. The biological characteristics of the microbial flocculants produced by LB1 were investigated. The results show that the optimal production period of microbial flocculant using LB1 is 96 h; and the products, found in the fermentation liquor, comprise the extracellular organic matter (EOM) of LB1 generated during LB1 growth and the secondary metabolites in the anaphase of LB1. Meanwhile, the mycelia can improve the performance of the microbial flocculants. Because heat has a greater influence on the active substance in the microbial flocculants than other factors, the activity of the flocculants decreases with increasing temperature and the time of heating. The flocculants can flocculate mud-containing and melanin-containing wastewater effectively with a flocculation ratio of 85.1% and 92.2%, respectively. The optimal heating temperature varies from 20 to 45 ℃. When flocculating the two wastewater, the flocculating activity of the flocculants is above 57.7% and 70.9%, respectively, in a wide pH range from 3 to 11.展开更多
A new kind of compounded microbial flocculant (CMBF) for water and wastewater treatment has been developed through biological technology. In order to discuss its biological security, four groups of experiments, rat ac...A new kind of compounded microbial flocculant (CMBF) for water and wastewater treatment has been developed through biological technology. In order to discuss its biological security, four groups of experiments, rat acute toxicity test via mouth, salmonella assay in vitro, mouse micronucleus in vivo test and teratogenesis test were conducted to evaluate its general toxicity, genotoxicity and generative toxicity. The experimental results showed that this type of compounded microbial flocculant was a substantial non-toxic substance based on the fact that LD50 value was over 10 mg/kg. The results from salmonella in vivo test and mouse micronucleus in vivo test revealed that the compounded microbial flocculant is a genetically non-toxic substance. Furthermore, compounded microbial flocculant has little effect on the growth of all the rats, and any morphologic abnormal phenomenon hasn’t appeared.展开更多
The flocculation effect of the Phanerochaete chrysosporium on the coal slurry were studied by orthogonal experimental method in this study.The results of research show that the P.chrysosporium has a good effect on flo...The flocculation effect of the Phanerochaete chrysosporium on the coal slurry were studied by orthogonal experimental method in this study.The results of research show that the P.chrysosporium has a good effect on flocculating coal slurry.The optimum combination of the experimental is the P.chrysosporium,which is cultured in 2 days,mixed with 2 mL coagulant and 2 mL broth.The flocculant is a broken liquid with pH value of 6.The hightest flocculation ratio is 93.5%.The result of FTIR shows that the biological extraction of P.chrysosporium contains a lot of acidic polysaccharides that has the effect on flocculation.Microbial flocculant molecules and particles of coal slurry could be flocculated by‘‘absorption bridge’’.展开更多
Microbial flocculant (MBF) is a kind of novel flocculant, which is widely used for the food industry, highly concentrated organic waste water treatment and the urban water supply technology. Due to its characteristi...Microbial flocculant (MBF) is a kind of novel flocculant, which is widely used for the food industry, highly concentrated organic waste water treatment and the urban water supply technology. Due to its characteristics of superior flocculation effect, without secondary pollution to the environment and being easily degraded, MBF has been emerging as a hotspot of water treatment research in recent years. In this paper, the latest progress of the preparation of MBFs and the flocculating mechanism were presented. The practical application research of MBFs for water treatment was reviewed. Finally, suggestions and development prospect of research on MBFs were discussed.展开更多
Screening of bioflocculant-producing microorganisms was carded out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by t...Screening of bioflocculant-producing microorganisms was carded out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by the analytical profile index (API) identification system, and named A9. Several important factors that had an effect on A9's bioflocculant-producing and flocculating activity were studied. A total of 4 g/L Kaolin suspension was used to measure the flocculating activity of the bioflocculant from A9. It was found that maltose and urea were Ag's best carbon and nitrogen sources, respectively, and the flocculating activity of the flocculating agent from A9 was markedly increased by the addition of trivalent cations such as Fe^3+ and Al^3+; furthermore, the bioflocculant produced by A9 was most effective when the pH value was 6.0.展开更多
A strain saccharomycete STSM-1 with high flocculanting activity was isolated from activated sludge with conventional methods. The high production rate and the low cost STSM-1 medium was obtained by selecting different...A strain saccharomycete STSM-1 with high flocculanting activity was isolated from activated sludge with conventional methods. The high production rate and the low cost STSM-1 medium was obtained by selecting different kinds of media, carbon source, nitrogen source and inorganic salt ion. The best flocculant-producing conditions were found by changing medium initial pH, culture temperature and ventilation flow. The best flocculating effect was obtained by changing positive ion types, density and concentration of flocculant.展开更多
This paper dealt with non-parallelism between the effect of microbial flocculant (MBF) on sewerage disposal and the flocculation rate, the high flocculation rate doesn’t mean the fine disposal effectiveness, and reve...This paper dealt with non-parallelism between the effect of microbial flocculant (MBF) on sewerage disposal and the flocculation rate, the high flocculation rate doesn’t mean the fine disposal effectiveness, and revealed the problem encountered when the exclusive parameter―flocculation rate is used to evaluate the effect of MBF on sewerage disposal. The results showed that MBF made from different carbon sources have some influence on the effectiveness of sewerage disposal; flocculation rate cannot authentically reflect the status of sewerage disposal. When the exclusive parameter―flocculation rate is used to evaluate the effect of MBF on sewerage disposal, it would be exaggerated, especially in disposing COD-low sewerage. The authors considered that when flocculation rate is used to evaluate the effect of MBF on sewerage disposal, it is better to take COD-removal rate into account.展开更多
This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for t...This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.展开更多
[Objective] The purpose was to select out and identify a flocculant producing strain which could produce high active flocculant.[Method] The strain producing high active flocculant was isolated out and purified throug...[Objective] The purpose was to select out and identify a flocculant producing strain which could produce high active flocculant.[Method] The strain producing high active flocculant was isolated out and purified through medium culture and the selected strain was identified through observing its culture characters and determining its physiological and biochemical property.[Result] Fourteen strains of bacteria with flocculant producing function were isolated from tested soil samples through isolation,purification and preliminary screening using dilution-spread plate method and plate streaking method.Five strains of flocculant producing bacteria showing higher flocculation activity were selected out after second screening and their flocculation rates were higher than 70%;the flocculation activity of one strain among them was still stable after multiple subculturings,its flocculation rate was always above 90% and it was marked as TS-1.TS-1 was encapsulated Gram-positive bacillus and there was no lipid in it,such as poly-β-hydroxybutyric acid.TS-1 was Bacillus amyloliquefaciens,so it was named Bacillus TS-1.[Conclusion] The strain selected out in this experiment could be used in the flocculation and biochemical treatment of wastewater from starch industry.展开更多
[Objectives] This study was conducted to isolate and screen the bacteria that can convert trans-anethole to anisic acid from star anise and its environmental samples, and identify the bacteria. [Methods] According to ...[Objectives] This study was conducted to isolate and screen the bacteria that can convert trans-anethole to anisic acid from star anise and its environmental samples, and identify the bacteria. [Methods] According to the traditional microbial culture method, with trans-anethole as the sole carbon source, through enrichment culture and separation and purification, preliminary screening by thin layer chromatography and re-screening by high-performance liquid chromatography, strains that degraded trans-anethole to produce anisic acid were obtained, and 16 S rDNA sequencing and phylogenetic tree construction were performed for genetic analysis. [Results] Eleven strains that degraded trans-anethole to produce anisic acid were obtained, among which strain NT2 that produced anisic acid with a relatively high efficiency was initially identified as Pseudomonas sp. The strain’s trans-anethole degradation rate was 45.41%, and the molar production rate and cumulative concentration of anisic acid were 21.80% and 1.96 g/L, respectively. [Conclusions] Strain NT2 has a strong ability to degrade trans-anethole to produce anisic acid, and can enrich strain resources for degradation of trans-anethole to anisic acid through microbial conversion.展开更多
基金funded by the National Natural Science Foun-dation of China(No.51974343)the China Postdoctoral Science Foundation(No.2021M703588)the Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas(Yangtze University)(No.YQZC202307).
文摘This study aims to further enhance the oil recovery of reservoirs in the Zhong-2 Block of the Gudao Oilfield by identifying the most effective microbial-flooding activator systems and applying them in the field.We began by analyzing the structure of the reservoirs'endogenous microbial communities to understand the potential impact of microbial flooding.This was followed by determining commonly used activator systems based on their abilities to stimulate oil-displacement functional bacteria.Through laboratory experiments on oil displacement efficiency and sweep characteristics,we determined the optimal activator injection method(injection ratio)and the requisite bacterial concentration for maximal microbial-flooding efficacy.Finally,we selected the optimal activator systems and applied them to field tests.Our findings suggest the target block is highly receptive to microbial-flooding.In terms of performance,the activator systems ranked as No.3>No.4>No.1>No.2.Interestingly,a deep activator system,when compared to the top-performing No.3 system,exhibited a higher bacterial concentration peak and longer peaking duration.Optimal oil displacement effects were observed at a 1:4 vol ratio between the No.3 activator and deep activator systems,with bacterial concentrations of up to 106 cells/mL or above.Field tests with the selected activator systems,following a specific injection protocol,demonstrated a notable increase in oil production and a reduction in water cut.
基金Supported by National Natural Science Foundation of China(51064011)Jiangxi Education Science " Twelfth Five-year" Planning Program (10YB335)Science Foundation for Youths of Jiangxi Educational Committee (GJJ09599)~~
文摘[Objective] To screen out a microbial flocculant with good decolorization effect on methyl orange wastewater,and study the effect of different cultural conditions on decolorization effect of methyl orange.[Method] Absorbance of methyl orange solution before and after decolorization was determined by spectrophotometer,and the decolorization rate was calculated to compare the effects of different cultural conditions on removal rate of methyl orange.[Result]An optimal actinomycete stain(F-1-2) was screened out,and the best cultural condition was as follows:with sucrose as carbon source and NaNO3 as nitrogen source,cultured in constant temperature oscillator at 150 r/min,30℃ for 72 h.Under the optimal condition,the removal rate against methyl orange could reach 68.4%.[Conclusion]Different culture conditions have great impact on decolorization effect of strain.
基金Science and Technology Key Projects ofSichuan Province (No.2008SZ0008)Foundation of Southwest Jiaotong University (No.2007B10)
文摘A high effective bioflocculant-producing strain named LB1 was isolated and screened from the leachate by routine micro- method. The strain was identified as genus Pseudomonas according to the morphologic and physiological-biochemical characteristics of the strain. The biological characteristics of the microbial flocculants produced by LB1 were investigated. The results show that the optimal production period of microbial flocculant using LB1 is 96 h; and the products, found in the fermentation liquor, comprise the extracellular organic matter (EOM) of LB1 generated during LB1 growth and the secondary metabolites in the anaphase of LB1. Meanwhile, the mycelia can improve the performance of the microbial flocculants. Because heat has a greater influence on the active substance in the microbial flocculants than other factors, the activity of the flocculants decreases with increasing temperature and the time of heating. The flocculants can flocculate mud-containing and melanin-containing wastewater effectively with a flocculation ratio of 85.1% and 92.2%, respectively. The optimal heating temperature varies from 20 to 45 ℃. When flocculating the two wastewater, the flocculating activity of the flocculants is above 57.7% and 70.9%, respectively, in a wide pH range from 3 to 11.
文摘A new kind of compounded microbial flocculant (CMBF) for water and wastewater treatment has been developed through biological technology. In order to discuss its biological security, four groups of experiments, rat acute toxicity test via mouth, salmonella assay in vitro, mouse micronucleus in vivo test and teratogenesis test were conducted to evaluate its general toxicity, genotoxicity and generative toxicity. The experimental results showed that this type of compounded microbial flocculant was a substantial non-toxic substance based on the fact that LD50 value was over 10 mg/kg. The results from salmonella in vivo test and mouse micronucleus in vivo test revealed that the compounded microbial flocculant is a genetically non-toxic substance. Furthermore, compounded microbial flocculant has little effect on the growth of all the rats, and any morphologic abnormal phenomenon hasn’t appeared.
基金fnancial support provided by the National Natural Science Foundation of China(No.51274012)for this work is gratefully acknowledged
文摘The flocculation effect of the Phanerochaete chrysosporium on the coal slurry were studied by orthogonal experimental method in this study.The results of research show that the P.chrysosporium has a good effect on flocculating coal slurry.The optimum combination of the experimental is the P.chrysosporium,which is cultured in 2 days,mixed with 2 mL coagulant and 2 mL broth.The flocculant is a broken liquid with pH value of 6.The hightest flocculation ratio is 93.5%.The result of FTIR shows that the biological extraction of P.chrysosporium contains a lot of acidic polysaccharides that has the effect on flocculation.Microbial flocculant molecules and particles of coal slurry could be flocculated by‘‘absorption bridge’’.
文摘Microbial flocculant (MBF) is a kind of novel flocculant, which is widely used for the food industry, highly concentrated organic waste water treatment and the urban water supply technology. Due to its characteristics of superior flocculation effect, without secondary pollution to the environment and being easily degraded, MBF has been emerging as a hotspot of water treatment research in recent years. In this paper, the latest progress of the preparation of MBFs and the flocculating mechanism were presented. The practical application research of MBFs for water treatment was reviewed. Finally, suggestions and development prospect of research on MBFs were discussed.
文摘Screening of bioflocculant-producing microorganisms was carded out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by the analytical profile index (API) identification system, and named A9. Several important factors that had an effect on A9's bioflocculant-producing and flocculating activity were studied. A total of 4 g/L Kaolin suspension was used to measure the flocculating activity of the bioflocculant from A9. It was found that maltose and urea were Ag's best carbon and nitrogen sources, respectively, and the flocculating activity of the flocculating agent from A9 was markedly increased by the addition of trivalent cations such as Fe^3+ and Al^3+; furthermore, the bioflocculant produced by A9 was most effective when the pH value was 6.0.
文摘A strain saccharomycete STSM-1 with high flocculanting activity was isolated from activated sludge with conventional methods. The high production rate and the low cost STSM-1 medium was obtained by selecting different kinds of media, carbon source, nitrogen source and inorganic salt ion. The best flocculant-producing conditions were found by changing medium initial pH, culture temperature and ventilation flow. The best flocculating effect was obtained by changing positive ion types, density and concentration of flocculant.
基金Granted by the Funds of Chinese Academy of Sciences for the HundredTalents Program and the National Natural Science Foundation of China(Grant No. NSFC40463001).
文摘This paper dealt with non-parallelism between the effect of microbial flocculant (MBF) on sewerage disposal and the flocculation rate, the high flocculation rate doesn’t mean the fine disposal effectiveness, and revealed the problem encountered when the exclusive parameter―flocculation rate is used to evaluate the effect of MBF on sewerage disposal. The results showed that MBF made from different carbon sources have some influence on the effectiveness of sewerage disposal; flocculation rate cannot authentically reflect the status of sewerage disposal. When the exclusive parameter―flocculation rate is used to evaluate the effect of MBF on sewerage disposal, it would be exaggerated, especially in disposing COD-low sewerage. The authors considered that when flocculation rate is used to evaluate the effect of MBF on sewerage disposal, it is better to take COD-removal rate into account.
文摘This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.
基金Supproted by the Key Project of Chinese Ministry of Education(211189)~~
文摘[Objective] The purpose was to select out and identify a flocculant producing strain which could produce high active flocculant.[Method] The strain producing high active flocculant was isolated out and purified through medium culture and the selected strain was identified through observing its culture characters and determining its physiological and biochemical property.[Result] Fourteen strains of bacteria with flocculant producing function were isolated from tested soil samples through isolation,purification and preliminary screening using dilution-spread plate method and plate streaking method.Five strains of flocculant producing bacteria showing higher flocculation activity were selected out after second screening and their flocculation rates were higher than 70%;the flocculation activity of one strain among them was still stable after multiple subculturings,its flocculation rate was always above 90% and it was marked as TS-1.TS-1 was encapsulated Gram-positive bacillus and there was no lipid in it,such as poly-β-hydroxybutyric acid.TS-1 was Bacillus amyloliquefaciens,so it was named Bacillus TS-1.[Conclusion] The strain selected out in this experiment could be used in the flocculation and biochemical treatment of wastewater from starch industry.
基金Supported by The Basic Ability Improvement Project for Young and Middle-aged Teachers in Guangxi Universities(2017KY0288)。
文摘[Objectives] This study was conducted to isolate and screen the bacteria that can convert trans-anethole to anisic acid from star anise and its environmental samples, and identify the bacteria. [Methods] According to the traditional microbial culture method, with trans-anethole as the sole carbon source, through enrichment culture and separation and purification, preliminary screening by thin layer chromatography and re-screening by high-performance liquid chromatography, strains that degraded trans-anethole to produce anisic acid were obtained, and 16 S rDNA sequencing and phylogenetic tree construction were performed for genetic analysis. [Results] Eleven strains that degraded trans-anethole to produce anisic acid were obtained, among which strain NT2 that produced anisic acid with a relatively high efficiency was initially identified as Pseudomonas sp. The strain’s trans-anethole degradation rate was 45.41%, and the molar production rate and cumulative concentration of anisic acid were 21.80% and 1.96 g/L, respectively. [Conclusions] Strain NT2 has a strong ability to degrade trans-anethole to produce anisic acid, and can enrich strain resources for degradation of trans-anethole to anisic acid through microbial conversion.