The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is ...The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.展开更多
Marine sediment microbial fuel cell(MSMFCs)can be utilized as a long lasting power source to drive small instruments to work for long time on ocean floor and its higher power has a significant meaning for practical ap...Marine sediment microbial fuel cell(MSMFCs)can be utilized as a long lasting power source to drive small instruments to work for long time on ocean floor and its higher power has a significant meaning for practical application.Anode modification can greatly improve the performance of MSMFCs.Herein,humic acid(HA)and humic acid-iron ion complex(HA-Fe)were used to modify the anode for constructing a better MSMFCs.The results indicated that HA-Fe modified anode,better than HA modification,significantly improved the MSMFCs cell power output.The maximum power density of HA-Fe modified MSMFCs is 165.3 mW m−2,which are 6.5-folds of blank MSMFCs.The number of microorganisms on anode,redox activity,and relative kinetic activity were 1.8-,6.1-,and 13.1-folds of blank MSMFCs,respectively.The MSMFCs improvement would be attributed to the electron transfer media of HA and the valence conversion of Fe ions.A synergistic interaction between the naturally occurring HA and Fe ions on the anodic surface in marine sediments would make the modified anodes have‘renewable’characteristics,which is beneficial for the MSMFCs to maintain its long-term higher power.展开更多
Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phtha...Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.展开更多
Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effec...Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m^2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m^2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.展开更多
A unique sulfonated polyaniline/vanadate composite was synthesized and utilized as a composite anode in microbial fuel cells on ocean floor (BMFCs). X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were em...A unique sulfonated polyaniline/vanadate composite was synthesized and utilized as a composite anode in microbial fuel cells on ocean floor (BMFCs). X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were employed to characterize its chemical composition and morphology. Wettability of the composite anodes decreases due to the addition of polytetrafluoroethylene (PTFE). The electrochemical behavior of the composite anodes was investigated by means of linear sweep voltammetry and Tafel plot measurements. Compared with the plain graphite anode,the composite anode significantly improves the power density,5.5-fold higher,reaching 187.1 mW/m2 and gives a 27-fold higher exchange current density and a higher kinetic activity. A novel synergistic mechanism between sulfonated polyaniline and vanadate is proposed to explain the excellent electrochemical performance. This composite thus has great potential to be used as an anode material for a high-power BMFC.展开更多
The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrog...The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrogen-carbon hierarchically nanostructured materials had been successfully fabricated by pyrolyzing glucose,iron chloride,and dicyandiamide with the aim of solving the issue.The obtained catalyst with an ultrathin nanostructure demonstrated an idiosyncratic electrocatalytic activity caused by the high content introduction of nitrogen and iron atoms,large surface area,which will offer sufficient active sites for improving the charge/mass transfer and reducing the diffusion resistance.Furthermore,with the increase of N dopant in the catalyst,better ORR catalytic activity could be achieved.Illustrating the N doping was beneficial to the ORR process.The high content of N,BET surface area caused by the N increasing could be responsible for the superior performance according to results of X-Ray photoelectron spectroscopy(XPS),Raman and Brunner-Emmet-Teller(BET)analysis.The ORR on the Fe-N3/C material follows 4e−pathway,and MFCs equipped with Fe-N3/C catalyst achieved a maximum power density(MPD)of 912 mW/m2,which was 1.1 times of the MPD generated by the commercial Pt/C(830 mW/m2).This research not only provided a feasible way for the fabrication of Pt-free catalyst towards oxygen reduction but also proposed potential cathode catalysts for the development of MFCs.展开更多
This work aimed to investigate the distinct electrochemical performance and microbial flora of microbial fuel cells(MFCs)in relation to different single hazardous fed fuels.Three replicate MFCs were inoculated with th...This work aimed to investigate the distinct electrochemical performance and microbial flora of microbial fuel cells(MFCs)in relation to different single hazardous fed fuels.Three replicate MFCs were inoculated with the same microbial consortium from a coking wastewater treatment plants wherein ammonium chloride(ammoniiim chlo-ride-fed MFC,N-MFC),phenol(phenol-fed MFC,P-MFC)and potassium sulphide(potassium sulphide-fed MFC,S-MFC)were the sole substrates and main components of real coking wastewater.With initial concentrations of am-monium chloride,phenol and potassium sulphide of 0.75,0.60 and 0.55 g/L,the removal efficiencies reached 95.6%,90.6%and 99.9%,respectively,whereas the peak output power densities totalled 697,324 and 1215 mW/m^2.Micro-bial community analysis showed that the respective addition of substrate substantially altered the microbial community structure of anode biofllm,resulting in changes in relative abundance and emergence of new strains and further affecting the electrochemical properties of MFCs.The chemical oxygen demand(COD)removal efficiency of real coking wastewater,in which,the inoculum was the combined biomass from the three MFCs,reached 82.3%.展开更多
A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investi...A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.展开更多
The effects of bioelectrochemical systems (BESs) for the suppression of methane gas emissions from sediment were examined using a laboratory-scale reactor system. Methane gas emissions from acetate were suppressed by ...The effects of bioelectrochemical systems (BESs) for the suppression of methane gas emissions from sediment were examined using a laboratory-scale reactor system. Methane gas emissions from acetate were suppressed by approximately 36% from control based on the installation of a BES in which carbon-graphite electrodes were buried in sediment and arbitrarily set at certain oxidative potentials (+300 mV vs Ag/AgCl) using a potentiostat. Meanwhile, methane gas emissions increased in the BES reactor where the electrode potential was set at -200 mV. Results obtained from pyrotag sequencing analysis of the microbial community on the surface of the buried electrodes targeting 16S rRNA genes demonstrated that the genusGeobacterhad drastically propagated in a sample from the reactor where the electrodes were buried. Quantitative analysis of 16S rRNA genes of archaea also revealed that the archaeal population had decreased to approximately 1/6 of its original level on the electrode of the BES set at +300 mV. This implied that the oxidation-reduction potential (ORP) in the sediment was raised to the inhibition level for methanogenesis in the vicinity of the buried electrode. Analysis of electron flux in the experiment revealed that electrons intrinsically used for methanogenesis were recovered via current generation in the sediment where a potential of +300 mV was set for the electrode, although most electrons donated from acetate were captured by oxygen respiration and other electron-accepting reactions. These results imply that BES technology is suitable for use as a tool for controlling re-dox-dependent reactions in natural environments, and that it also brought about changes in the microbial population structure and methanogenic activity in sediment.展开更多
基金supported by the National Natural Science Foundation of China(No.22075262)。
文摘The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.
基金supported by the National Natural Science Foundation of China(No.22075262).
文摘Marine sediment microbial fuel cell(MSMFCs)can be utilized as a long lasting power source to drive small instruments to work for long time on ocean floor and its higher power has a significant meaning for practical application.Anode modification can greatly improve the performance of MSMFCs.Herein,humic acid(HA)and humic acid-iron ion complex(HA-Fe)were used to modify the anode for constructing a better MSMFCs.The results indicated that HA-Fe modified anode,better than HA modification,significantly improved the MSMFCs cell power output.The maximum power density of HA-Fe modified MSMFCs is 165.3 mW m−2,which are 6.5-folds of blank MSMFCs.The number of microorganisms on anode,redox activity,and relative kinetic activity were 1.8-,6.1-,and 13.1-folds of blank MSMFCs,respectively.The MSMFCs improvement would be attributed to the electron transfer media of HA and the valence conversion of Fe ions.A synergistic interaction between the naturally occurring HA and Fe ions on the anodic surface in marine sediments would make the modified anodes have‘renewable’characteristics,which is beneficial for the MSMFCs to maintain its long-term higher power.
基金supported by the National Defense Science and Technology Innovation Zone Project (Nos. 17H863-05-ZT-002-040-001 and 18-H863-05-ZT-002-01301
文摘Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.51225802)the National Natural Science Foundation of China(No.51578534)+1 种基金the“Hundred Talents Program”of the Chinese Academy of SciencesProject 135 of the Chinese Academy of Sciences(No.YSW2013B06)
文摘Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m^2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m^2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.
基金supported by the Scientific and Technological Development Plan Project of Shandong Province, China (2008GG10007003)the Key Laboratory of Marine Environment & Ecology, Ministry of Education (2008010)the Key Laboratory of Submarine Geoscience and Exploring Technology of Ministry of Education, Ocean University of China (2008-01)
文摘A unique sulfonated polyaniline/vanadate composite was synthesized and utilized as a composite anode in microbial fuel cells on ocean floor (BMFCs). X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were employed to characterize its chemical composition and morphology. Wettability of the composite anodes decreases due to the addition of polytetrafluoroethylene (PTFE). The electrochemical behavior of the composite anodes was investigated by means of linear sweep voltammetry and Tafel plot measurements. Compared with the plain graphite anode,the composite anode significantly improves the power density,5.5-fold higher,reaching 187.1 mW/m2 and gives a 27-fold higher exchange current density and a higher kinetic activity. A novel synergistic mechanism between sulfonated polyaniline and vanadate is proposed to explain the excellent electrochemical performance. This composite thus has great potential to be used as an anode material for a high-power BMFC.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51806224)Natural Science Foundation of Guangdong Province(Grant No.2017A030310280)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21050400)the China Postdoctoral Science Foundation(Grant No.2018M631899)The authors acknowledge the care and spiritual support from Gaixiu Yang over the past two years.
文摘The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrogen-carbon hierarchically nanostructured materials had been successfully fabricated by pyrolyzing glucose,iron chloride,and dicyandiamide with the aim of solving the issue.The obtained catalyst with an ultrathin nanostructure demonstrated an idiosyncratic electrocatalytic activity caused by the high content introduction of nitrogen and iron atoms,large surface area,which will offer sufficient active sites for improving the charge/mass transfer and reducing the diffusion resistance.Furthermore,with the increase of N dopant in the catalyst,better ORR catalytic activity could be achieved.Illustrating the N doping was beneficial to the ORR process.The high content of N,BET surface area caused by the N increasing could be responsible for the superior performance according to results of X-Ray photoelectron spectroscopy(XPS),Raman and Brunner-Emmet-Teller(BET)analysis.The ORR on the Fe-N3/C material follows 4e−pathway,and MFCs equipped with Fe-N3/C catalyst achieved a maximum power density(MPD)of 912 mW/m2,which was 1.1 times of the MPD generated by the commercial Pt/C(830 mW/m2).This research not only provided a feasible way for the fabrication of Pt-free catalyst towards oxygen reduction but also proposed potential cathode catalysts for the development of MFCs.
基金the Coal Joint Fund from the National Natural Science Foundation of China and Shenhua Group Corp.Ltd.,China(No.U1261103)the Natural Science Foundation of Shanxi Province of China(Nos.2014011014-6,201701D121028).
文摘This work aimed to investigate the distinct electrochemical performance and microbial flora of microbial fuel cells(MFCs)in relation to different single hazardous fed fuels.Three replicate MFCs were inoculated with the same microbial consortium from a coking wastewater treatment plants wherein ammonium chloride(ammoniiim chlo-ride-fed MFC,N-MFC),phenol(phenol-fed MFC,P-MFC)and potassium sulphide(potassium sulphide-fed MFC,S-MFC)were the sole substrates and main components of real coking wastewater.With initial concentrations of am-monium chloride,phenol and potassium sulphide of 0.75,0.60 and 0.55 g/L,the removal efficiencies reached 95.6%,90.6%and 99.9%,respectively,whereas the peak output power densities totalled 697,324 and 1215 mW/m^2.Micro-bial community analysis showed that the respective addition of substrate substantially altered the microbial community structure of anode biofllm,resulting in changes in relative abundance and emergence of new strains and further affecting the electrochemical properties of MFCs.The chemical oxygen demand(COD)removal efficiency of real coking wastewater,in which,the inoculum was the combined biomass from the three MFCs,reached 82.3%.
基金Project supported by the Heilongjiang Science and Technology Key Projects (No. GC07A305)the Fund of Harbin Engineering University (No. HEUFT08008)the Daqing Science and Technology Key Projects (No. SGG2008-029), Heilongjiang, China
文摘A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.
文摘The effects of bioelectrochemical systems (BESs) for the suppression of methane gas emissions from sediment were examined using a laboratory-scale reactor system. Methane gas emissions from acetate were suppressed by approximately 36% from control based on the installation of a BES in which carbon-graphite electrodes were buried in sediment and arbitrarily set at certain oxidative potentials (+300 mV vs Ag/AgCl) using a potentiostat. Meanwhile, methane gas emissions increased in the BES reactor where the electrode potential was set at -200 mV. Results obtained from pyrotag sequencing analysis of the microbial community on the surface of the buried electrodes targeting 16S rRNA genes demonstrated that the genusGeobacterhad drastically propagated in a sample from the reactor where the electrodes were buried. Quantitative analysis of 16S rRNA genes of archaea also revealed that the archaeal population had decreased to approximately 1/6 of its original level on the electrode of the BES set at +300 mV. This implied that the oxidation-reduction potential (ORP) in the sediment was raised to the inhibition level for methanogenesis in the vicinity of the buried electrode. Analysis of electron flux in the experiment revealed that electrons intrinsically used for methanogenesis were recovered via current generation in the sediment where a potential of +300 mV was set for the electrode, although most electrons donated from acetate were captured by oxygen respiration and other electron-accepting reactions. These results imply that BES technology is suitable for use as a tool for controlling re-dox-dependent reactions in natural environments, and that it also brought about changes in the microbial population structure and methanogenic activity in sediment.