期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Tailoring Iron-Ion Release of Cellulose-Based Aerogel-Coated Iron Foam for Long-Term High-Power Microbial Fuel Cells
1
作者 Zhengyang Ni Huitao Yu +6 位作者 Haoran Wang Mengmeng Qin Feng Li Hao Song Xiangyu Chen Yiyu Feng Wei Feng 《Transactions of Tianjin University》 EI CAS 2024年第5期436-447,共12页
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ... The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation. 展开更多
关键词 microbial fuel cells Coating Fe ions Tailor release LONG-TERM
下载PDF
The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells:A comprehensive review
2
作者 Gowthami Palanisamy Sadhasivam Thangarasu +5 位作者 Ranjith Kumar Dharman Chandrashekar S.Patil Thakur Prithvi Pal Singh Negi Mahaveer D.Kurkuri Ranjith Krishna Pai Tae Hwan Oh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期402-431,I0010,共31页
Microbial fuel cell(MFC)technology has emerged as an effective solution for energy insecurity and bioremediation.However,identifying suitable components(particularly separators or membranes)with the required propertie... Microbial fuel cell(MFC)technology has emerged as an effective solution for energy insecurity and bioremediation.However,identifying suitable components(particularly separators or membranes)with the required properties,such as low cost and high performance,remains challenging and restricts practical application.Commercial membranes,such as Nafion,exhibit excellent performance in MFC.However,these membranes have high production costs,which considerably increase the overall MFC unit cell cost.Among the numerous types,the separators or membranes developed from biopolymers and naturally occurring earthen sources have proven to be a novel and efficient concept due to their natural abundance,cost-effectiveness(approximately$20 m^(-2),$5 m^(-2),and$1 kg-1for biopolymers,ceramics,and earthensources,respectively),structural properties,proton transportation,manufacturing and modification ease,and environmental friendliness.In this review,we emphasize cost-effective renewable green materials(biopolymers,bio-derived materials,and naturally occurring soil,clay,ceramics or minerals)for MFC applications for the first time.Biopolymers with good thermal,mechanical,and water retention properties,sustainability,and environmental friendliness,such as cellulose and chitosan,are typically preferred.Furthermore,the modification or introduction of various functional groups in biopolymers to enhance their functional properties and scale MFC power density is explored.Subsequently,separator/membrane development using various bio-sources(such as coconut shells,banana peels,chicken feathers,and tea waste ash)is described.Additionally,naturally occurring sources such as clay,montmorillonite,and soils(including red,black,rice-husk,and Kalporgan soil)for MFC were reviewed.In conclusion,the existing gap in MFC technology was filled by providing recommendations for future aspects based on the barriers in cost,environment,and characteristics. 展开更多
关键词 BIOMEMBRANE Bioseparator microbial fuel cell Energy harvesting BIOENERGY Wastewater treatment
下载PDF
Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells 被引量:5
3
作者 Yang'en Xie Zhaokun Ma +2 位作者 Huaihe Song Zachary A.Stoll Pei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期81-86,共6页
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carb... Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM) and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 mW/m(2) (700 degrees C) and 461.5 mW/m(2) (1200 degrees C) and further increase to 472.5 mW/m(2) (700 degrees C) and 515.4 mW/m(2) (1200 degrees C) with the co-carbonization modification of melamine. The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs's anode materials. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 microbial fuel cells Anode materials Carbon felts MODIFICATION MELAMINE
下载PDF
Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells 被引量:4
4
作者 Shengnan Li Shih-Hsin Ho +3 位作者 Tao Hua Qixing Zhou Fengxiang Li Jingchun Tang 《Green Energy & Environment》 SCIE CSCD 2021年第5期644-659,共16页
Microbial fuel cells(MFCs)have gained remarkable attention as a novel wastewater treatment that simultaneously generates electricity.The low activity of the oxygen reduction reaction(ORR)remains one of the most critic... Microbial fuel cells(MFCs)have gained remarkable attention as a novel wastewater treatment that simultaneously generates electricity.The low activity of the oxygen reduction reaction(ORR)remains one of the most critical bottlenecks limiting the development of MFCs.To date,although research on biochar as an electrocatalyst in MFCs has made tremendous progress,further improvements are needed to make it economically practical.Recently,biochars have been considered to be ORR electrocatalysts with developmental potential.In this review,the ORR mechanism and the essential requirements of ORR catalysts in MFC applications are introduced.Moreover,the focus is to highlight the material selection,properties,and preparation of biochar electrocatalysts,as well as the evaluation and measurement of biochar electrodes.Additionally,in order to provide comprehensive information on the specific applications of biochars in the field of MFCs,their applications as electrocatalysts,are then discussed in detail,including the uses of nitrogen-doped biochar and other heteroatom-doped biochars as electrocatalysts,poisoning tests for biochar catalysts,and the cost estimation of biochar catalysts.Finally,profound insights into the current challenges and clear directions for future perspectives and research are concluded. 展开更多
关键词 BIOCHAR ELECTROCATALYSTS Oxygen reduction reaction microbial fuel cells PYROLYSIS
下载PDF
Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells 被引量:4
5
作者 HAN Wuli YAN Xuemin +3 位作者 JIANG Yu PING Mei DENG Xiaoqing ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期280-286,共7页
Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S cata... Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC. 展开更多
关键词 ELECTROCATALYST oxygen reduction reaction microbial fuel cells nitrogen and sulfur co-doped
下载PDF
Comparative Study of Two Carbon Fiber Cathodes and Theoretical Analysis in Microbial Fuel Cells on Ocean Floor 被引量:2
6
作者 FU Yubin LIU Yuanyuan +2 位作者 XU Qian LU Zhikai ZHANG Yelong 《Journal of Ocean University of China》 SCIE CAS 2014年第2期257-261,共5页
Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conduct... Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conducted in the paper. The two carbon fibers were heat treated to improve cell performance (CF-R-H & CF-P-H), and were used to build a new BMFCs structure with a foamy carbon anode. The maximum power density was 112.4mWm-2 for CF-R-H, followed by 66.6mWm-2 for CF-R, 49.7 mWm-2 for CF-P-H and 21.6mWm-2 for CF-P respectively. The higher specific area and deep groove make CF-R have a better power output than with CF-P. Meanwhile, heat treatment of carbon fiber can improve cell power, nearly two-fold higher than heat treatment of plain fiber. This improvement may be due to the quinones group formation to accelerate the reduction of oxygen and electron transfer on the fiber surface in the three phase boundary after heat treatment. Compared to PAN-based carbon fiber, Rayon-based carbon fiber would be preferentially selected as cathode in novel BMFCs design due to its high surface area, low cost and higher power. The comparison research is significant for cathode material selection and cell design. 展开更多
关键词 microbial fuel cells on ocean floor carbon fiber cathode heat treatment power density theoretical analysis
下载PDF
Carbon material-based anodes in the microbial fuel cells 被引量:3
7
作者 Xiaoqi Fan Yun Zhou +3 位作者 Xueke Jin Rong-Bin Song Zhaohui Li Qichun Zhang 《Carbon Energy》 CAS 2021年第3期449-472,共24页
For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon material... For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon materials possess the following features:low cost,rich natural abundance,good thermal and chemical stability,as well as tunable surface properties and spatial structure.Therefore,the development of carbon materials and carbon-based composites has flourished in the anode of MFCs during the past years.In this review,the major carbon materials used to decorate MFC anodes have been systematically summarized,based on the differences in composition and structure.Moreover,we have also outlined the carbon material-based hybrid biofilms and carbon material-modified exoelectrogens in MFCs,along with the discussion of known strategies and mechanisms to enhance the bacteria-hosting capabilities of carbon material-based anodes,EET efficiencies,and MFC performances.Finally,the main challenges coupled with some exploratory proposals are also expounded for providing some guidance on the future development of carbon material-based anodes in MFCs. 展开更多
关键词 carbon materials cell surface modification extracellular electron transfer hybrid biofilm microbial fuel cells
下载PDF
3-Aminopropyltriethoxysilane Complexation with Iron Ion Modified Anode in Marine Sediment Microbial Fuel Cells with Enhanced Electrochemical Performance
8
作者 ZAI Xuerong GUO Man +6 位作者 HAO Yaokang HOU Shaoxin YANG Zhiwei LI Jia LI Yang JI Hongwei FU Yubin 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第3期581-589,共9页
Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon fel... Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output. 展开更多
关键词 3-AMINOPROPYLTRIETHOXYSILANE iron ion composite modified carbon anode electro-chemical performances marine sediment microbial fuel cells
下载PDF
Application of Microbial Fuel Cells in Wastewater Treatment
9
作者 Zhang Jiqiang 《Meteorological and Environmental Research》 CAS 2018年第2期81-83,共3页
Traditional wastewater treatment is an industry with high energy consumption. Under the dual pressures of environmental pollution and energy shortage,microbial fuel cells( MFCs) have been paid more attention to due ... Traditional wastewater treatment is an industry with high energy consumption. Under the dual pressures of environmental pollution and energy shortage,microbial fuel cells( MFCs) have been paid more attention to due to their unique advantages of high efficiency,high cleanliness,and environmental protection,and have become a research hotspot in the current environmental field. In this study,advances in the application of MFCs in wastewater treatment were summarized,and main problems were analyzed. 展开更多
关键词 microbial fuel cells Organic wastewater Inorganic wastewater Hardly degradable wastewater
下载PDF
Improvement of Renewable Bioenergy Production in Microbial Fuel Cells with Saponin Supplementation
10
作者 Skylar Choi Yongjin Park +7 位作者 Immanuel H. Anaborne Jin Sik Song Ji Woo Han So Hyun Jeon Jaewoo Kim James Kim Jinkwon Lee Paul S. Chung 《Journal of Sustainable Bioenergy Systems》 2021年第2期82-93,共12页
Microbial fuel cell (MFC) is one of renewable biofuel production technology that directly converts biomass to electricity. Cellulosic biomass is particularly attractive renewable resources for its low cost and abundan... Microbial fuel cell (MFC) is one of renewable biofuel production technology that directly converts biomass to electricity. Cellulosic biomass is particularly attractive renewable resources for its low cost and abundance and neutral carbon balance. However, methanogenesis remains as a major factor limiting MFC performance. The current study reports that saponin addition at 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> w/v dose to anolyte in MFCs inhibited methanogenesis and improves power generation and cellulose fermentation. Mediator-less two chamber H-type MFCs were prepared using </span><span><span style="font-family:Verdana;">rumen fluid as anode inocula at 20</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> v/v of anolyte to convert finely ground pine tree (Avicel) at 2</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;">, w/v to electricity. Saponin was added to the anode of MFC at 0.005</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> or 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> v/v dosage for treatment. </span></span><span style="font-family:Verdana;">MFC power and current across an external resistor were measured daily for 10d. On d10, collected gases from anode compartment were measured for total gas volume and analyzed for gas composition on gas chromatography. Supplementation of saponin to MFC at 0.005</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> did not have any effects on electricity generation or biogas production and composition. Saponin at 0.05% dose reduced 10</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> of methane production and increased 40</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> of CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> production and 6.4</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> of total gas production for 10d MFC operation. Voltage across resistor prior to treatment addition (d0) was 164.75 ± 9.07 mV. In control group, voltage across resistor did not change (P = 0.9153) with time course and mean was 167.8 ± 8.20 mV ranged from 157 to 174.5 mV during 10d operation. In 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin group, voltage across resistor increased (P <</span></span><span style="font-family:Verdana;"> 0</span><span style="font-family:""><span style="font-family:Verdana;">.0001) after d2 and mean was 187.3 ± 4.30 mV ranged between 161.5 and 204.0 mV and the 10d mean of voltage across resistor in 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin was greater (P <</span></span><span style="font-family:Verdana;"> 0</span><span style="font-family:""><span style="font-family:Verdana;">.0001) than in control group. 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin also had greater voltage across resistor at d5 (P = 0.0030) and d6 (P = 0.0246) than control. End point potential increased (P <</span></span><span style="font-family:Verdana;"> 0</span><span style="font-family:""><span style="font-family:Verdana;">.0001) in 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin after d2. 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin had greater (P < 0.05) end point potentials than control at d1, d4, d7, d10, and also 10d mean was greater (731.9 vs 606.5 mV;P <</span></span><span style="font-family:Verdana;"> 0</span><span style="font-family:""><span style="font-family:Verdana;">.0001) in 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin. Power density increased (P <</span></span><span style="font-family:Verdana;"> 0</span><span style="font-family:""><span style="font-family:Verdana;">.0001) after d2 in 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin. 0.05</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"> Saponin MFCs had greater (P < 0.05) power density than control at d5 and d6, and also a greater (P <</span></span><span style="font-family:Verdana;"> 0</span><span style="font-family:Verdana;">.0001) overall mean of 10d operation. The current study provides strong background for potential use of saponin and saponin containing natural resources for methanogenesis inhibitor and cellulolysis enhancer in MFC and also cellulolysis reactors. 展开更多
关键词 microbial fuel cells SAPONIN BIOENERGY
下载PDF
Characterization of Fe/N-doped graphene as air-cathode catalyst in microbial fuel cells 被引量:1
11
作者 Dingling Wang Zhaokun Ma +1 位作者 Yang’en Xie Huaihe Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1187-1195,共9页
This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed... This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed on the Fe–N/SLG sheets after a carbonization process. The maximum power density of1210 ± 23 m W·mobtained with Fe–N/SLG catalyst in an MFC was 10.7% higher than that of Pt/C catalyst(1080 ± 20 mW ·m) under the same condition. The results of RDE test show that the ORR electron transfer number of Fe–N/SLG was 3.91 ± 0.02, which suggested that ORR catalysis proceeds through a four-electron pathway. The whole time of the synthesis of electro-catalysts is about 10 h, making the research take a solid step in the MFC expansion due to its low-cost, high efficiency and favorable electrochemical performance. Besides, we compared the electrochemical properties of catalysts using SLG, high conductivity graphene(HCG, a kind of multilayer graphene) and high activity graphene(HAG, a kind of GO) under the same conditions, providing a solution for optimal selection of cathode catalyst in MFCs.The morphology, crystalline structure, elemental composition and ORR activity of these three kinds of Fe–N/C catalysts were characterized. Their ORR activities were compared with commercial Pt/C catalyst.It demonstrates that this kind of Fe–N/SLG can be a type of promising highly efficient catalyst and could enhance ORR performance of MFCs. 展开更多
关键词 microbial fuel cell GRAPHENE ELECTROCATALYSTS Power density Oxygen reduction reaction
下载PDF
Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance 被引量:1
12
作者 Nishit Savla Raksha Anand +1 位作者 Soumya Pandit Ram Prasad 《Journal of Renewable Materials》 SCIE EI 2020年第12期1581-1605,共25页
Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bio... Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step.The material of the anode plays a vital role in increasing the MFC’s power output.The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties.The nanomaterials in anode gives a high surface area,improved electron transfer promotes electroactive biofilm.Enhanced power output in terms of Direct current(DC)can be obtained as the consequence of improved microbe-electrode interaction.However,several limitations like complex synthesis and degeneration of property do exist in the development of nanomaterial-based anode.The present review discusses different renewable nanomaterial applied in the anode to recover bioelectricity in MFC.Carbon nanomaterials have emerged in the past decade as promising materials for anode construction.Composite materials have also demonstrated the capacity to become potential anode materials of choice.Application of a few transition metal oxides have been explored for efficient extracellular electron transport(EET)from microbes to the anode. 展开更多
关键词 microbial fuel cell(MFC) anodic modifications CAPACITANCE carbon nanotubes graphene porous carbons metallic nanomaterials power density coulombic efficiency
下载PDF
A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells 被引量:1
13
作者 Pooja Dange Nishit Savla +5 位作者 Soumya Pandit Rambabu Bobba Sokhee P.Jung Piyush Kumar Gupta Mohit Sahni Ram Prasad 《Journal of Renewable Materials》 SCIE EI 2022年第3期665-697,共33页
The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved ... The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved power generation.The cathode is generally recognized as the limiting factor due to its high-distance proton transfer,slow oxygen reduction reaction(ORR),and expensive materials.The heterogeneous reaction determines power gen-eration in MFC.This comprehensive review describes-recent advancements in the development of cathode mate-rials and catalysts associated with ORR.The recent studies indicated the utilization of different metal oxides,the ferrite-based catalyst to overcome this bottleneck.These studies conclude that some cathode materials,in parti-cular,graphene-based conductive polymer composites with non-precious metal catalysts provide substantial ben-efits for sustainable development in the field of MFCs.Furthermore,it also highlights the potentiality to replace the conventional platinum air cathode for the large-scale production of the next generation of MFCs.It was evi-dent from the experiments that cathode catalyst needs to be blended with conductive carbon materials to make cathode conductive and efficient for ORR.This review discusses various antifouling strategies for cathode biofoul-ing and its effect on the MFC performance.Moreover,it also depicts cost estimations of various catalysts essential for further scale-up of MFC technology. 展开更多
关键词 CATHODE catalyst microbial fuel cell(MFC) NANOMATERIALS oxygen reduction reaction(ORR) BIOFOULING BIOCATHODE
下载PDF
Power production enhancement with polyaniline composite anode in benthic microbial fuel cells 被引量:1
14
作者 JIA Yu-hong QI Zhen-lian YOU Hong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期499-505,共7页
In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that... In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that the PANI modification,especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance.The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance.A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC,which is 8.1 times higher than that of control.The PANI-Mn anode BMFC also gives a favorable maximum power density(16.78 mW/m2).Fe or Mn modification has better effect in improving the conductivity of polyaniline,thus improving the energy output of BMFCs.This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC. 展开更多
关键词 benthic microbial fuel cell anode modification POLYANILINE high power output
下载PDF
Electrochemical Properties of Electrodes with Different Shapes and Diffusion Kinetic Analysis of Microbial Fuel Cells on Ocean Floor 被引量:3
15
作者 FU Yubin LIU Jia +3 位作者 SU Jia ZHAO Zhongkai LIU Yang XU Qian 《Journal of Ocean University of China》 SCIE CAS 2012年第1期25-31,共7页
Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performanc... Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions. 展开更多
关键词 microbial fuel cell on ocean floor electrode shape diffusion kinetics three-phase boundary power output
下载PDF
Multi-objective steady-state optimization of two-chamber microbial fuel cells 被引量:1
16
作者 Ke Yang Yijun He Zifeng Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1000-1012,共13页
A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and was... A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives. 展开更多
关键词 microbial fuel cell Multi-objective optimization Genetic algorithm Level diagrams Pareto front
下载PDF
Ferroelectric solid solution Li1-xTa1-xWxO3 as potential photocatalysts in microbial fuel cells:Effect of the W content
17
作者 Abdellah Benzaouak Nour-Eddine Touach +5 位作者 V.M.Ortiz-Martinez M.J.Salar-Garcia F.Hernandez-Fernandez A.P.de los Rios Mohammed El Mahi El Mostapha Lotfi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1985-1991,共7页
Microbial fuel cells(MFCs)are bio-electrochemical systems that can directly convert the chemical energy contained in an effluent into bioelectricity by the action of microorganisms.The performance of these devices is ... Microbial fuel cells(MFCs)are bio-electrochemical systems that can directly convert the chemical energy contained in an effluent into bioelectricity by the action of microorganisms.The performance of these devices is heavily impacted by the choice of the material that forms the cathode.This work focuses on the assessment of ferroelectric and photocatalytic materials as a new class of non-precious catalysts for MFC cathode construction.A series of cathodes based on mixed oxide solid solution of LiTaO_3with WO_3formulated as Li_(1-x)Ta_(1-x)W_xO_3(x=0,0.10,0.20 and0.25),were prepared and investigated in MFCs.The catalyst phases were synthesized,identified and characterized by DRX,PSD,MET and UV–Vis absorption spectroscopy.The cathodes were tested as photoelectrocatalysts in the presence and in the absence of visible light in devices fed with industrial wastewater.The results revealed that the catalytic activity of the cathodes strongly depends on the ratio of substitution of W^(6+)in the LiTaO_3matrix.The maximum power densities generated by the MFC working with this series of cathodes increased from60.45 mW·m^(-3)for x=0.00(LiTaO_3)to 107.2 mW·m^(-3)for x=0.10,showing that insertion of W^(6+)in the tantalate matrix can improve the photocatalytic activity of this material.Moreover,MFCs operating under optimal conditions were capable of reducing the load of chemical oxygen demand by 79%(COD_(initial)=1030 mg·L^(-1)). 展开更多
关键词 Ferroelectric materials TANTALATE PHOTOCATHODE microbial fuel cell BIOENERGY Wastewater treatment
下载PDF
Recent Advances on the Development of Functional Materials in Microbial Fuel Cells:From Fundamentals to Challenges and Outlooks
18
作者 Qian Zhu Jingping Hu +5 位作者 Bingchuan Liu Shaogang Hu Sha Liang Keke Xiao Jiakuan Yang Huijie Hou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期401-426,共26页
Microbial fuel cells(MFCs),as a sustainable and promising technology to solve both environmental pollution and energy shortage,have captured tremendous attention.The conversion efficiency of chemical energy contained ... Microbial fuel cells(MFCs),as a sustainable and promising technology to solve both environmental pollution and energy shortage,have captured tremendous attention.The conversion efficiency of chemical energy contained in organic waste or wastewater to electricity via microbial metabolism strongly depends on the performance of each functional unit,including the anode,cathode and separator/membrane used in MFCs.Therefore,significant attention has been paid toward developing advanced functional materials to enhance the performance of each unit or provide new featured functions.This review paper provides a comprehensive review on recent achievements and advances in the modification and development of functional materials for MFC systems,including 1)the development of functional anode materials for enhanced microbial compatibilities as well as electron transfer capabilities,2)the development of cost-effective separators/membranes such as ion exchange membrane,porous membrane,polymer electrolyte membrane and composite membrane,and 3)the development of functional cathode catalysts to decrease the over-potential and enhance the electrocatalytic efficiency for oxygen reduction reaction in order to substitute the common costly Pt catalyst.The challenges and outlooks of functional materials for MFC applications are also discussed. 展开更多
关键词 ANODE CATHODE functional material MEMBRANE microbial fuel cell
下载PDF
Performance of Sewage Sludge Treatment and Electricity Generation by Different Configuration Microbial Fuel Cells
19
作者 Jun-Qiu Jiang Kun Wang +3 位作者 Xue-Xuan Peng Qing-Liang Zhao Yun-Shu Zhang Xiu-Dong Zhou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期1-6,共6页
This paper compared the degradation efficiency of sludge organic matters and electric-production by two typical microbial fuel cells——dual-chamber microbial fuel cell(DMFC)and single chamber air cathode microbial fu... This paper compared the degradation efficiency of sludge organic matters and electric-production by two typical microbial fuel cells——dual-chamber microbial fuel cell(DMFC)and single chamber air cathode microbial fuel cell(SAMFC),and the variations of sludge protein,polysaccharide and ammonia nitrogen within the systems were also investigated.The results showed that the concentration of sludge soluble chemical oxygen demand,protein and carbohydrate of DMFC are higher than these of SAMFC during the systems operation,while DMFC can achieve a better ammonia nitrogen removal than SAMFC.Under the same operation condition,the stable voltage output of DMFC and SAMFC is 0.61 V and 0.37 V;the maximum power density of DMFC and SAMFC is 2.79 W/m3and 1.25 W/m3;TCOD removal efficiency of DMFC and SAMFC is 34.14%and 28.63%for 12 d,respectively.Meanwhile,DMFC has a higher coulomb efficiency than SAMFC,but both are less than5%.The results showed that DMFC present a better performance on sludge degradation and electric-production. 展开更多
关键词 sewage sludge dual-chamber microbial fuel cell(DMFC) single chamber air cathode microbial fuel cell(SAMFC) DEGRADATION electricity production
下载PDF
Identification of the Electricity-Producing Bacteria in Wastewater for Microbial Fuel Cells (MFCs)
20
作者 S.M. Zain S. Roslani +4 位作者 N. Anuar R. Hashim F. Suja S.K. Kamarudin N.E.A. Basri 《Journal of Environmental Science and Engineering》 2010年第10期51-56,共6页
A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy during substrate oxidation by microorganisms. The characterization and identification of these microbial communities will al... A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy during substrate oxidation by microorganisms. The characterization and identification of these microbial communities will allow better control of this electricity generation with simultaneous removal of carbon and nitrogen. This study aims to investigate the role of natural bacteria in electricity generation by studying three different sources of wastewater: the raw wastewater (RW), wastewater from an aeration tank (AEW) and returned activated sludge (RAS) from an activated sludge treatment plant. The result showed that after the MFC treatment, the number of bacterial strains was reduced from twenty strains to eight strains. Microscopic observation further showed that fifteen isolate before the treatment were gram-positive, and five were gram-negative whereas all isolates after the treatment were gram-positive rods or cocci The four strains isolated from the RAS inoculums, β-Comamonas sp., γ-Enterobacter sp., Bacillus cereus sp. and Clostridium sp. produced the highest power density of 67.57 mW/m^2 which made them potential candidates for electrochemically active bacteria in MFCs. However, the level of chemical oxygen demand (COD) removal was 20% and the total kjeldahl nitrogen (TKN) removal was 66.7%. Key words: 展开更多
关键词 producing bacteria microbial fuel cell (MFC) WASTEWATER polymerase chain reaction (PCR)
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部