期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity:a case study in the Jiaozhou Bay,China 被引量:1
1
作者 TAO Jing MA Weiwei +2 位作者 ZHU Maoxu LI Tie YANG Rujun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期48-55,共8页
As a case study, refined iron(Fe) speciation and quantitative characterization of the reductive reactivity of Fe(Ⅲ)oxides are combined to investigate Fe diagenetic processes in a core sediment from the eutrophic ... As a case study, refined iron(Fe) speciation and quantitative characterization of the reductive reactivity of Fe(Ⅲ)oxides are combined to investigate Fe diagenetic processes in a core sediment from the eutrophic Jiaozhou Bay.The results show that a combination of the two methods can trace Fe transformation in more detail and offer nuanced information on Fe diagenesis from multiple perspectives. This methodology may be used to enhance our understanding of the complex biogeochemical cycling of Fe and sulfur in other studies. Microbial iron reduction(MIR) plays an important role in Fe(Ⅲ) reduction over the upper sediments, while a chemical reduction by reaction with dissolved sulfide is the main process at a deeper(〉 12 cm) layer. The most bioavailable amorphous Fe(Ⅲ) oxides [Fe(Ⅲ)am] are the main source of the MIR, followed by poorly crystalline Fe(Ⅲ) oxides [Fe(Ⅲ)pc)]and magnetite. Well crystalline Fe(Ⅲ) oxides [Fe(Ⅲ)wc] have barely participated in Fe diagenesis. The importance of the MIR over the upper layer may be a combined result of the high availability of highly reactive Fe oxides and low availability of labile organic matter, and the latter is also the ultimate factor limiting sulfate reduction and sulfide accumulation in the sediments. Microbially reducible Fe(Ⅲ) [MR-Fe(Ⅲ)], which is quantified by kinetics of Fe(II)-oxide reduction, mainly consists of the most reactive Fe(Ⅲ)am and less reactive Fe(Ⅲ)pc. The bulk reactivity of the MR-Fe(Ⅲ) pool is equivalent to aged ferrihydrite, and shows down-core decrease due to preferential reduction of highly reactive phases of Fe oxides. 展开更多
关键词 iron oxides Jiaozhou Bay in China marine sediments microbial iron reduction reactivity speciation
下载PDF
Temporal Distribution of Diagnostic Biofabrics in the Lower and Middle Ordovician in North China:Clues to the Geobiology of the Great Ordovician Biodiversification Event 被引量:12
2
作者 LIU Jianbo ZHAN Renbin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第3期513-523,共11页
The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences... The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences of the Great Ordovician Biodiversification Event (GOBE). The pre-GOBE sedimentary systems deposited in Tremadoc display widespread microbialite and flat-pebble conglomerates, and a less extent of bioturbation. Through the transitional period of early Floian, the sedimentary systems in the rest of the Early and Mid- Ordovician change to GOBE type and are characterized by intensive bioturbation and vanishing flat-pebble conglomerates and subtidal microbial sediments. The irreversible changes in sedimentary systems in North China are linked to the GOBE, which conduced the increase in infaunal tiering, the expansion of infaunal ecospace, and the appearance of new burrowers related to the development of the Paleozoic Evolutionary Fauna during the Ordovician biodiversification. Thus, changes in sedimentary systems during the pivotal period of the GOBE were consequences of a steep diversification of benthic faunas rather than the GOBE's environmental background. 展开更多
关键词 BIOTURBATION flat-pebble conglomerate microbial sediment ORDOVICIAN biodiversification geobiology
下载PDF
Microbial bioavailability of dissolved organic nitrogen(DON) in the sediments of Lake Shankou,Northeastern China 被引量:5
3
作者 Mingzhou Su Jingtian Zhang +5 位作者 Shouliang Huo Beidou Xi Fei Hua Fengyu Zan Guangren Qian Jianyong Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期79-88,共10页
Dissolved organic nitrogen(DON)extracted from Lake Shankou sediments using KCl was isolated into hydrophobic and hydrophilic fractions.The bioavailabilities of the hydrophobic and hydrophilic fractions to three type... Dissolved organic nitrogen(DON)extracted from Lake Shankou sediments using KCl was isolated into hydrophobic and hydrophilic fractions.The bioavailabilities of the hydrophobic and hydrophilic fractions to three types of bacterial communities collected from sediments,activated sludge and compost products were examined.The DON recoveries obtained by DAX-8 and cation exchange resins treatment were 96.17% ± 1.58% and 98.14% ±0% for the samples obtained from N4 and N14 stations,respectively.After 25 days of incubation at 25℃,most DON(59% to 96%)was degraded.Hydrophilic DON exhibited a higher reduction rate than hydrophobic DON during the growth phase.Untreated wastewater from Changshuihe town was the main degradable DON source to station N4,and 93% of hydrophilic DON and 80% of hydrophobic DON were degraded.Station N14 received a large amount of refractory DON from forest soils and exhibited DON degradation rates of 82% and 71% for the hydrophilic and hydrophobic fractions,respectively.Amino acid contents and fluorescence intensities were also analyzed.Approximately 27% to 74% of amino acids were taken up by day 5,and their concentration gradually increased in the following days due to the decomposition of dissolved proteins.Parallel factor analysis resulted in identification of tryptophan-like proteins,tyrosine-like proteins and FA-like substances.During the growth phase,40%–51% of the tryptophan-like proteins were taken up by bacteria,and the accumulation of tyrosine-like proteins was attributed to the release of biotic substances.The concentration of the FA-like substances decreased due to microbial decomposition. 展开更多
关键词 microbial bioavailability Dissolved organic nitrogen (DON) Sediment Amino acids PARAFAC
原文传递
Effects of sulfate-reducing bacteria on methylmercury at the sediment–water interface 被引量:1
4
作者 Lingxia Zeng Guangjun Luo +2 位作者 Tianrong He Yanna Guo Xiaoli Qian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期214-219,共6页
Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reduc... Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria(SRB) on mercury(Hg) methylation at sediment–water interfaces. Concentrations of dissolved methyl mercury(DMe Hg) in the overlying water of the control cores with bioactivity maintained(BAC) and cores with only sulfate-reducing bacteria inhibited(SRBI) and bacteria fully inhibited(BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMe Hg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations(r =- 0.5311 and r =- 0.4977 for BAC and SRBI, respectively). The water DMe Hg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment–water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster(hgc AB), besides SRB,causing Hg methylation in the sediment–water system. 展开更多
关键词 Methyl mercury Sediment–water interface microbial activity Redox condition Sulfate-reducing bacteria
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部