As a generative model,Latent Dirichlet Allocation Model,which lacks optimization of topics' discrimination capability focuses on how to generate data,This paper aims to improve the discrimination capability throug...As a generative model,Latent Dirichlet Allocation Model,which lacks optimization of topics' discrimination capability focuses on how to generate data,This paper aims to improve the discrimination capability through unsupervised feature selection.Theoretical analysis shows that the discrimination capability of a topic is limited by the discrimination capability of its representative words.The discrimination capability of a word is approximated by the Information Gain of the word for topics,which is used to distinguish between "general word" and "special word" in LDA topics.Therefore,we add a constraint to the LDA objective function to let the "general words" only happen in "general topics" other than "special topics".Then a heuristic algorithm is presented to get the solution.Experiments show that this method can not only improve the information gain of topics,but also make the topics easier to understand by human.展开更多
微博情感分析是社会媒体挖掘中的重要任务之一,在恐怖组织识别、个性化推荐、舆情分析等方面具有重要的理论和应用价值.但与传统文本数据不同,微博消息短小而凌乱,包含着大量诸如微博表情符号之类的特有信息,同时微博情感是与其讨论主...微博情感分析是社会媒体挖掘中的重要任务之一,在恐怖组织识别、个性化推荐、舆情分析等方面具有重要的理论和应用价值.但与传统文本数据不同,微博消息短小而凌乱,包含着大量诸如微博表情符号之类的特有信息,同时微博情感是与其讨论主题是密切相关的.多数现有的微博情感分析方法都没有将微博主题与微博情感进行协同分析,或者在微博主题情感分析过程中没有考虑将用户关系、用户性格情绪等特征数据,从而导致微博情感分析与主题检测的效果难尽人意.为此,提出了一个基于多特征融合的微博主题情感挖掘模型TSMMF(Topic Sentiment Model based on Multi-feature Fusion),该模型将情感表情符号与微博用户性格情绪特征纳入到图模型LDA中实现微博主题与情感的同步推导.实验结果表明,与当前用于短文本情感主题挖掘的最优模型(JST,SLDA与DPLDA)相比较,TSMMF具有更优的微博主题情感检测性能.展开更多
针对传统的用户兴趣主题模型存在非动态、噪声性、计算复杂度高和兴趣演化分析维度单一等问题,基于滑动窗口技术,引入兴趣主题遗传因子保持主题连续性,并定义用于捕获通用语义和噪声干扰词的兴趣通用主题。提出了SGC-LDA(sliding-window...针对传统的用户兴趣主题模型存在非动态、噪声性、计算复杂度高和兴趣演化分析维度单一等问题,基于滑动窗口技术,引入兴趣主题遗传因子保持主题连续性,并定义用于捕获通用语义和噪声干扰词的兴趣通用主题。提出了SGC-LDA(sliding-window,genetic factor and common topic-latent dirichlet allocation)用户兴趣主题模型,并根据该模型对数据集进行主题演化分析,从兴趣主题强度、兴趣主题状态和兴趣主题路径三个维度分析用户的兴趣偏好及演化规律。运用新浪微博语料文本进行实证分析,结果表明,SGC-LDA用户兴趣主题模型优于传统的LDA主题模型,可以准确描述用户兴趣演化规律,漏报率、误报率以及归一化开销均低于未进行主题关联过滤的基准(Baseline)方法,从而证明了模型的有效性。展开更多
基金supported by National Nature Science Foundation of China under Grant No.60905017,61072061National High Technical Research and Development Program of China(863 Program)under Grant No.2009AA01A346+1 种基金111 Project of China under Grant No.B08004the Special Project for Innovative Young Researchers of Beijing University of Posts and Telecommunications
文摘As a generative model,Latent Dirichlet Allocation Model,which lacks optimization of topics' discrimination capability focuses on how to generate data,This paper aims to improve the discrimination capability through unsupervised feature selection.Theoretical analysis shows that the discrimination capability of a topic is limited by the discrimination capability of its representative words.The discrimination capability of a word is approximated by the Information Gain of the word for topics,which is used to distinguish between "general word" and "special word" in LDA topics.Therefore,we add a constraint to the LDA objective function to let the "general words" only happen in "general topics" other than "special topics".Then a heuristic algorithm is presented to get the solution.Experiments show that this method can not only improve the information gain of topics,but also make the topics easier to understand by human.
文摘微博情感分析是社会媒体挖掘中的重要任务之一,在恐怖组织识别、个性化推荐、舆情分析等方面具有重要的理论和应用价值.但与传统文本数据不同,微博消息短小而凌乱,包含着大量诸如微博表情符号之类的特有信息,同时微博情感是与其讨论主题是密切相关的.多数现有的微博情感分析方法都没有将微博主题与微博情感进行协同分析,或者在微博主题情感分析过程中没有考虑将用户关系、用户性格情绪等特征数据,从而导致微博情感分析与主题检测的效果难尽人意.为此,提出了一个基于多特征融合的微博主题情感挖掘模型TSMMF(Topic Sentiment Model based on Multi-feature Fusion),该模型将情感表情符号与微博用户性格情绪特征纳入到图模型LDA中实现微博主题与情感的同步推导.实验结果表明,与当前用于短文本情感主题挖掘的最优模型(JST,SLDA与DPLDA)相比较,TSMMF具有更优的微博主题情感检测性能.
文摘针对传统的用户兴趣主题模型存在非动态、噪声性、计算复杂度高和兴趣演化分析维度单一等问题,基于滑动窗口技术,引入兴趣主题遗传因子保持主题连续性,并定义用于捕获通用语义和噪声干扰词的兴趣通用主题。提出了SGC-LDA(sliding-window,genetic factor and common topic-latent dirichlet allocation)用户兴趣主题模型,并根据该模型对数据集进行主题演化分析,从兴趣主题强度、兴趣主题状态和兴趣主题路径三个维度分析用户的兴趣偏好及演化规律。运用新浪微博语料文本进行实证分析,结果表明,SGC-LDA用户兴趣主题模型优于传统的LDA主题模型,可以准确描述用户兴趣演化规律,漏报率、误报率以及归一化开销均低于未进行主题关联过滤的基准(Baseline)方法,从而证明了模型的有效性。