期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lightweight,Strong and High Heat-Resistant Poly(lactide acid)Foams via Microcellular Injection Molding with Self-Assembly Nucleating Agent
1
作者 Xiao-Hu Bing Wen-Yu Ma +5 位作者 Ming-Hui Wu Peng Gao Xiao Zhou Hai-Bin Luo Long Wang Wen-Ge Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期739-750,共12页
Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance an... Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance and poor cellular structure stemming from its inherent slow crystallization rate and low melt strength.In this study,a high-performance PLA foam with well-defined cell morphology,exceptional strength and enhanced heat-resistance was successfully fabricated via a core-back microcellular injection molding(MIM)process.Differential scanning calorimetry(DSC)results revealed that the added hydrazine-based nucleating agent(HNA)significantly increased the crystallization temperature and accelerated the crystallization process of PLA.Remarkably,the addition of a 1.5 wt%of HNA led to a significant reduction in PLA’s cell size,from 43.5µm to 2.87µm,and a remarkable increase in cell density,from 1.08×10^(7)cells/cm^(3)to 2.15×10^(10)cells/cm^(3).This enhancement resulted in a final crystallinity of approximately 55.7%for the PLA blend foam,a marked improvement compared to the pure PLA foam.Furthermore,at 1.5 wt%HNA concentration,the tensile strength and tensile toughness of PLA blend foams demonstrated remarkable improvements of 136%and 463%,respectively.Additionally,the Vicat softening temperature of PLA blend foam increased significantly to 134.8°C,whereas the pure PLA foam exhibited only about 59.7℃.These findings underscore the potential for the preparation of lightweight injection-molded PLA foam with enhanced toughness and heat-resistance,which offers a viable approach for the production of high-performance PLA foams suitable for large-scale applications. 展开更多
关键词 Poly(lactide acid) Nucleating agent microcellular injection molding HEAT-RESISTANCE Toughness
原文传递
Effect of film types on thermal response,cellular structure,forming defects and mechanical properties of combined in-mold decoration and microcellular injection molding parts 被引量:1
2
作者 Wei Guo Zhihui Yu +3 位作者 Wenting Wei Zhenghua Meng Huajie Mao Lin Hua 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第33期98-108,共11页
Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the the... Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts. 展开更多
关键词 microcellular injection molding In-mold decoration Thermal response Cellular structure Forming defects Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部