The decoding principle of a tetra wedge anode, which is a development of the wedge and strip anode, is described. The influence of charge cloud size on decoding accuracy is studied using the Monte Carlo method. Simula...The decoding principle of a tetra wedge anode, which is a development of the wedge and strip anode, is described. The influence of charge cloud size on decoding accuracy is studied using the Monte Carlo method. Simulation results show that the decoding error is large when the size of charge clouds collected by the anode is small. Thus, the charge clouds collected by the tetra wedge anode should reach a necessary size to ensure accurate decoding. Finally, using the ultraviolet photon counting imaging system, the linearity and the spatial resolution of the system are tested. Experimental results show that the system has a good linearity and the spatial resolution is better than 100 μm.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 31070887 and 10878005)
文摘The decoding principle of a tetra wedge anode, which is a development of the wedge and strip anode, is described. The influence of charge cloud size on decoding accuracy is studied using the Monte Carlo method. Simulation results show that the decoding error is large when the size of charge clouds collected by the anode is small. Thus, the charge clouds collected by the tetra wedge anode should reach a necessary size to ensure accurate decoding. Finally, using the ultraviolet photon counting imaging system, the linearity and the spatial resolution of the system are tested. Experimental results show that the system has a good linearity and the spatial resolution is better than 100 μm.