期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels
1
作者 Elena Mosheva Ivan Krasnyakov 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1743-1758,共16页
Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over... Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering. 展开更多
关键词 Shearlet analysis complexity measure entropy measure CONVECTION microchannels double-diffusive instability
下载PDF
Numerical Simulation of Droplet Generation in Coaxial Microchannels
2
作者 Zongjun Yin Rong Su Hui Xu 《Fluid Dynamics & Materials Processing》 EI 2024年第3期487-504,共18页
In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop ... In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop flow”,“jet flow”,“squeeze flow”,and“co-flow”,have been obtained for different flow velocity ratios,channel diameter ratios,density ratios,viscosity ratios,and surface tension.The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly,and the associated droplet generation process has been critically discussed considering the related frequency,diameter,and pinch-off length.In particular,it is shown that the larger the flow velocity ratio,the smaller the diameter of generated droplets and the shorter the pinch-off length.The pinch-off length of a droplet is influenced by the channel diameter ratio and density ratio.The changes in viscosity ratio have a negligible influence on the droplet generation pinching frequency.With an increase in surface tension,the frequency of generation and pinch-off length of droplets decrease,but for small surface tension the generation diameter of droplet increases. 展开更多
关键词 Droplet generation characteristics coaxial microchannels flow patterns pinch-off length
下载PDF
Bionic microchannels for step lifting transpiration
3
作者 Zhaolong Wang Qiu Yin +7 位作者 Ziheng Zhan Wenhao Li Mingzhu Xie Huigao Duan Ping Cheng Ce Zhang Yongping Chen Zhichao Dong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期244-252,共9页
Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic... Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic microchannels.Herein,we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography(PμSL)based 3D printing technique.The circumradius of bionic microchannels(pentagonal,square,triangle,and five-pointed star)can be as small as 100μm with precisely fabricated sharp corners.What's more,those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners.Most significantly,those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters,though the water can only be transported to at most 20 mm for a single bionic microchannel.The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved.Those precisely fabricated,low-cost,various cross-sectional bionic microchannels promise applications as microfluidic chips,long-distance unpowered water transportation,step lifting,mimicked transpiration,and so on. 展开更多
关键词 bionic microchannel MICROFLUIDICS water transportation step lifting 3D printing
下载PDF
Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels
4
作者 Zhao-Miao Liu Li-Kun Liu Feng Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期741-749,共9页
Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as ... Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as Y-angle(90°,135°,-90° and-135°),channel depth and other factors have been taken into consideration.It is found that droplets generated in anti-Y-junctions have a smaller size and a shorter generation cycle compared with those in Yjunctions under the same experimental conditions.Through observing the internal velocity field,the vortex appearing in continuous phase in anti-Y-junctions is one of the key factors for the difference of droplet size and generation cycle.It is found that droplet size is bigger and generation cycle is longer when the absolute angle value of the intersection between the continuous and the dispersed phases(i.e.,the angle between the main channel and the continuous phase or the dispersed phase channel) increases.The droplet's size is influenced by the Y-angle,which varies with the channel depth in Y-junctions.The Y-angle has a positive effect on the droplet generation cycle,but a smaller height-width ratio will enhance the impact of a continuous and dispersed phase's intersection angle on the droplet generation cycle in Y-junctions microchannels. 展开更多
关键词 MICROFLUIDICS Y-junctions and anti-Yjunctions microchannels Y-angle Height-width ratio in cross section
下载PDF
Radio Frequency-Microchannels for Transdermal Delivery: Characterization of Skin Recovery and Delivery Window
5
作者 Yossi Kam Hagit Sacks +2 位作者 Keren Mevorat Kaplan Meir Stern Galit Levin 《Pharmacology & Pharmacy》 2012年第1期20-28,共9页
Transdermal delivery through Radio-Frequency-MicroChannels (RF-MCs) was proven to be a promising delivery method for hydrophilic drugs and macromolecules that must be injected. An important issue in assessing this tec... Transdermal delivery through Radio-Frequency-MicroChannels (RF-MCs) was proven to be a promising delivery method for hydrophilic drugs and macromolecules that must be injected. An important issue in assessing this technology is the life span of the microchannels (MCs). The time window in which the MCs remain open affects the delivery rate and determine the effective delivery duration. The present work focused on the characterization of the ViaDor-MCs recovery and closure process by measurements of transepidermal water loss (TEWL) before and after the formation of MCs, evaluation of the delivery window, and assessment of skin histology. Testosterone-cyclodextrin complex was used as the model drug for evaluation of the transdermal delivery. In-vitro permeation system and in-vivo guinea pig animal model were used in the delivery studies. Our findings demonstrate the recovery process of MCs created by the RF ablation technology. The observed gradual skin recovery affected the transdermal delivery rate. A significant transdermal delivery was shown up to 24 hrs post device application suggesting that an extended delivery of water soluble drugs, including macromolecules, is possible. The histology assessments demonstrated repair and healing of the induced MCs indicating that the RF micro-channeling technology is minimally invasive, transient in nature with no resulting skin trauma. 展开更多
关键词 Microporation microchannels RF ablation TESTOSTERONE TRANSDERMAL Delivery
下载PDF
Microfluidic Behavior of Ternary Mixed Carrier Solvents Based on the Tube Radial Distribution in Triple-Branched Microchannels in a Microchip
6
作者 Naoya Jinno Masahiko Hashimoto Kazuhiko Tsukagoshi 《Journal of Analytical Sciences, Methods and Instrumentation》 2012年第2期49-53,共5页
Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated i... Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated into three narrow channels, i.e., triple-branched microchannels. When the ternary carrier solution containing the fluorescent dyes, hydrophobic perylene (blue) and relatively hydrophilic Eosin Y (green), was fed into the wide channel under laminar flow conditions, the carrier solvent molecules or fluorescence dyes were radially distributed in the channel, forming inner (organic solvent-rich major;blue) and outer (water-rich minor;green) phases in the wide channel. And then, in the narrow channels, perylene molecules mostly appeared to flow through the center narrow channel and Eosin Y, which is distributed in the outer phases in the wide channel, flowed through the both side narrow channels. A metal ion, Cu(II) as a model, dissolved in the ternary mixed carrier solution was also examined. The Cu(II) showed fluidic behavior, transferring from the homogeneous carrier solution to the water-rich solution in the side narrow channels through the triple-branched microchannels. 展开更多
关键词 Triple-Branched microchannels TERNARY MIXED Solvents Fluorescence Dyes Metal Ion TUBE Radial Distribution Phenomenon (TRDP)
下载PDF
An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels
7
作者 胡涛 胡梦丹 +1 位作者 周思思 孙东科 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期89-92,共4页
We numerically study the dynamics of particle crystals in annular microchannels by the immersed-boundary(IB)lattice Boltzmann(LB) coupled model, analyze the fluid-particle interactions during the migration of part... We numerically study the dynamics of particle crystals in annular microchannels by the immersed-boundary(IB)lattice Boltzmann(LB) coupled model, analyze the fluid-particle interactions during the migration of particles,and reveal the underlying mechanism of a particle focusing on the presence of fluid flows. The results show that the Reynolds and Dean numbers are key factors influencing the hydrodynamics of particles. The particles migrate onto their equilibrium tracks by adjusting the Reynolds and Dean numbers. Elliptical tracks of particles during hydrodynamic focusing can be predicted by the IB-LB model. Both the small Dean number and the small particle can lead to a small size of the focusing track. This work would possibly facilitate the utilization of annular microchannel flows to obtain microfluidic flowing crystals for advanced applications in biomedicine and materials synthesis. 展开更多
关键词 An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular microchannels
下载PDF
Laminar flow of micropolar fluid in rectangular microchannels 被引量:8
8
作者 Shangjun Ye Keqin Zhu W. Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期403-408,共6页
Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a mic... Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the z-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper, the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail. 展开更多
关键词 Micropolar fluid. Microchannel Flowrate reduction Chebyshev collocation method
下载PDF
Rotating electroosmotic flows in soft parallel plate microchannels 被引量:1
9
作者 Yongbo LIU Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期1017-1028,共12页
We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid... We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid microchannel coated with a polyelectrolyte layer(PEL) on its surface. We compare the velocity in a soft microchannel with that in a rigid one for different rotating frequencies and find that the PEL has a trend to lower the velocities in both directions for a larger equivalent electrical double layer(EDL) thickness λFCL(λFCL = 0.3) and a smaller rotating frequency ω(ω < 5).However, for a larger rotating frequency ω(ω = 5), the main stream velocity u far away from the channel walls in a soft microchannel exceeds that in a rigid one. Inspired by the above results, we can control the EOF velocity in micro rotating systems by imparting PELs on the microchannel walls, which may be an interesting application in biomedical separation and chemical reaction. 展开更多
关键词 ROTATING ELECTROOSMOTIC flow (EOF) SOFT microchannel POLYELECTROLYTE layer (PEL) thickness
下载PDF
Study on the mixing of fluid in curved microchannels with heterogeneous surface potentials 被引量:1
10
作者 林建忠 张凯 李惠君 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第11期2688-2696,共9页
In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describ... In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describing the wall potential and external potential are solved to get the distribution of wall potential and external potential, then momentum equation is solved to get the fully developed flow field. Finally the mass transport equation is solved to get the concentration field. The results show that the curved microchannel has an optimized capability of sample mixing and transport when the heterogeneous surface is located at the left conjunction between the curved part and straight part. The variation of heterogeneous surface potential ψn has more influence on the capability of sample mixing than on that of sample transport. The ratio of the curved microchanners radius to width has a comparable effect on the capability of sample mixing and transport. The conclusions above are helpful to the optimization of the design of microfluidic devices for the improvement of the efficiency of sample mixing. 展开更多
关键词 MICROCHANNEL mixing efficiency electroosmosis numerical simulation
下载PDF
Electromagnetohydrodynamic flows and mass transport in curved rectangular microchannels 被引量:1
11
作者 Yongbo LIU Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1431-1446,共16页
Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length.In ... Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length.In this paper,the effective diffusivity of a neutral solute in an oscillating electromagnetohydrodynamic(EMHD)flow through a curved rectangular microchannel is investigated theoretically.The flow is assumed as a creeping flow due to the extremely low Reynolds number in such microflow systems.Through the theoretical analysis,we find that the effective diffusivity primarily depends on five dimensionless parameters,i.e.,the curvature ratio of the curved channel,the Schmidt number,the tidal displacement,the angular Reynolds number,and the dimensionless electric field strength parameter.Based on the obtained results,we can precisely control the mass transfer characteristics of the EMHD flow in a curved rectangular microchannel by appropriately altering the corresponding parameter values. 展开更多
关键词 electromagnetohydrodynamic(EMHD)flow curved rectangular microchannel mass transfer characteristic effective diffusivity
下载PDF
Hydrothermal performance analysis of various surface roughness configurations in trapezoidal microchannels at slip flow regime
12
作者 Davood Toghraie Ramin Mashayekhi +1 位作者 Mohammadreza Niknejadi Hossein Arasteh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1522-1532,共11页
The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microch... The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microchannels were investigated.The effects of mentioned parameters on the heat transfer coefficient through the microchannel,average Nusselt number and pressure drop for Reynolds number of 5,10,15 and 20 were examined.The obtained results showed that increasing the roughness height and number increases the pressure drop due to higher stagnation effects before and after roughness elements and decreases the Nusselt number due to higher recirculation zones effects than obstruction effects.The most reduction in Nusselt number and the most increment in pressure drop occur at the roughness height of 15%,roughness number of 6 and Reynolds number of 20 by about 10.6%and 52.8%than the smooth microchannel respectively. 展开更多
关键词 MICROCHANNEL Slip flow regime Surface roughness Trapezoidal cross-section
下载PDF
Condensation Heat Transfer in Horizontal Non-Circular Microchannels
13
作者 Hicham El Mghari Mohamed Asbik Hasna Louahlia-Gualous 《Energy and Power Engineering》 2013年第9期577-586,共10页
This investigation contributes to a better understanding of condensation heat transfer in horizontal non-circular microchannels. For this purpose, the conservation equations of mass, momentum and energy have been nume... This investigation contributes to a better understanding of condensation heat transfer in horizontal non-circular microchannels. For this purpose, the conservation equations of mass, momentum and energy have been numerically solved in both phases (liquid and vapor), and all the more, so the film thickness analytical expression has been established. Numerical results relative to variations of the meniscus curvature radius, the condensate film thickness, the condensation length and heat transfer coefficients, are analyzed in terms of the influencing physical and geometrical quantities. The effect of the microchannel shapes on the average Nusselt number is highlighted by studying condensation of steam insquare, rectangular and equilateral triangular microchannels with the same hydraulic diameter of 250 μm. 展开更多
关键词 CONDENSATION MICROCHANNEL Numerical Simulation Capillary Regime Heat Transfer
下载PDF
Flow Boiling Heat Transfer Characteristics and Delayed Dry-Out Ability of Non-Azeotropic Mixtures R245fa/R134a in Microchannels
14
作者 LU Yongjie LING Yongjun +3 位作者 ZHUANG Yuan LI Chenyang OUYANG Hongsheng HAN Xiaohong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期1174-1188,共15页
Microchannel flow boiling heat transfer has the advantages of strong heat dissipation capacity,good temperature uniformity,and compact structure.It is an excellent way to thermally manage electronic devices,but when t... Microchannel flow boiling heat transfer has the advantages of strong heat dissipation capacity,good temperature uniformity,and compact structure.It is an excellent way to thermally manage electronic devices,but when the heat flux exceeds CHF(Critical Heat Flux),the heat transfer performance deteriorates as the working fluid dries out.Non-azeotropic mixtures have the potential to effectively delay or avoid dry-out during the boiling process due to their temperature slide characteristics which causes the mass transfer resistance.To understand the influence of non-azeotropic mixtures on microchannel flow boiling,using the phase-change microchannel heat sink as the research object,the experiments on the flow boiling heat transfer performance of R245fa/R134a mixtures under different working conditions were carried out,and the characteristics of flow boiling heat transfer were obtained under the different working conditions,and comparison was developed with those of pure substance R245fa.The results demonstrated that a small amount of low-boiling-point components in the high-boiling-point working fluid inhibited boiling heat transfer to some extent,and lowered the average heat transfer coefficient under the non-dryout condition slightly lower than that of the pure substance;however,it also effectively delayed the onset of local dry-out and prevented significant deterioration in thermal transfer performance under the lower mass flow rate and higher heat flux,which could enhance the heat sink's stability. 展开更多
关键词 MICROCHANNEL flow boiling non-azeotropic mixture heat transfer characteristics DRY-OUT
原文传递
Flow boiling heat transfer in copper foam fin microchannels with different fin widths using R134a 被引量:1
15
作者 GAO WuHuan FU Kai +1 位作者 XU XiangHua LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3245-3258,共14页
Heat sinks of copper foam fin microchannels are developed to deal with cooling challenges.The heat sinks consist of fins made of copper foam and channels.The channels are 0.5 mm in width and 1 mm in height,and the fin... Heat sinks of copper foam fin microchannels are developed to deal with cooling challenges.The heat sinks consist of fins made of copper foam and channels.The channels are 0.5 mm in width and 1 mm in height,and the fins are 0.5 and 2.0 mm in width.Flow boiling experiments are conducted using R134a at subcooled and saturated inlet conditions.The heat flux is between 22 and 172 W/cm^(2),and the mass flux ranges from 264 to 1213 kg/(m^(2)s).The influence of the quality,the heat flux,and the mass flow rate on the heat transfer coefficient is obtained.It is found that wider fin raises the heat transfer coefficient.A correlation is developed based on heat transfer mechanisms,and it predicts the experimental result with a 12%mean absolute error.Compared with a solid fin microchannels heat sink,the heat transfer coefficient of the copper foam fin microchannels is higher(up to 60%)when the heat flux is lower than 100 W/cm^(2).The copper foam fin microchannels may enhance the heat transfer coefficient and reduce the pressure drop at the same time. 展开更多
关键词 MICROCHANNEL copper foam flow boiling heat transfer CORRELATION
原文传递
Effect of boundary slip on electroosmotic flow in a curved rectangular microchannel
16
作者 刘勇波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期303-309,共7页
The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel... The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections. 展开更多
关键词 electroosmotic flow(EOF) curved rectangular microchannels slip boundary conditions
下载PDF
Two-Phase Flow Patterns and Heat Transfer in Parallel Microchannels 被引量:2
17
作者 AlainDegiovanni BenjaminRemy StephanéAndre 《Journal of Thermal Science》 SCIE EI CAS CSCD 2002年第4期353-358,共6页
MicroChannel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro electronic devices. One of the important aspects associated with two- phase flows in microchannels is to... MicroChannel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro electronic devices. One of the important aspects associated with two- phase flows in microchannels is to study the bubble behavior. However, in the literature most of the reports present data of only a single channel. This does not account for flow mixing and hydrodynamic instability that occurs in parallel microchannels, connected by common inlet and outlet collectors. In the present study, experiments were performed for air- water and steam- water flow in parallel triangular microchannels with a base of 200-300μ m. The experimental study is based on systematic measurements of temperature and flow pattern by infrared radiometry and high-speed digital video imaging. In air-water flow, different flow patterns were observed simultaneously in the various microchannels at a fixed values of water and gas flow rates. In steam-water flow, instability in uniformly heated microchannels was observed. 展开更多
关键词 TWO-PHASE flow HEAT TRANSFER microchannels dryout.
原文传递
Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels 被引量:2
18
作者 Yuan Xing Tao Zhi +1 位作者 Li Haiwang Tian Yitu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1575-1581,共7页
This paper experimentally investigates the effect of surface roughness on flow and heat transfer characteristics in circular microchannels. All test pieces include 44 identical, parallel circular microchannels with di... This paper experimentally investigates the effect of surface roughness on flow and heat transfer characteristics in circular microchannels. All test pieces include 44 identical, parallel circular microchannels with diameters of 0.4 mm and 10 mm in length. The surface roughness of the microchannels is R= 0.86, 0.92, 1.02 lm, and the Reynolds number ranges from 150 to 2800.Results show that the surface roughness of the circular microchannels has remarkable effects on the performance of flow behavior and heat transfer. It is found that the Poiseuille and Nusselt numbers are higher when the relative surface roughness is larger. For flow behavior, the friction factor increases consistently with the increasing Reynolds number, and it is larger than the constant theoretical value for macrochannels. The Reynolds number for the transition from laminar to turbulent flow is about 1500, which is lower than the value for macrochannels. For the heat transfer property, Nusselt number also increases with increasing Reynolds number, and larger roughness contributes to higher Nusselt number. 展开更多
关键词 CIRCULAR Flow behavior Heat transfer microchannels ROUGHNESS
原文传递
Experimental investigation on boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels subjected to an acceleration force 被引量:1
19
作者 Sujun DONG Hongsheng JIANG +3 位作者 Yongqi XIE Xiaoming WANG Zhongliang HU Jun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第5期1136-1144,共9页
Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter... Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter long rotational arm was used to simulate the acceleration magnitude up to 9 g and three various acceleration directions. Three test sections with different geometric parameters were applied. The volume concentration of Al_2O_3 nanoparticles with an average diameter of 13 nm was varied from 0.07% to 0.1%. The mass flow rate and vapor quality were in ranges of 3–6 kg/h and 0.4–1.0%, respectively. The effects of the mass flow rate, microchannel aspect ratio,vapor quality, nanoparticle volume concentration, and acceleration direction and magnitude were analyzed in a systematic manner. Experimental results showed that the acceleration direction and magnitude had significant influences on the boiling heat transfer. The heat transfer under configuration C was found to be superior to that under configurations A and B. Moreover, the heat transfer coefficient increased with increases of the mass flow rate and the volume concentration and decreased with the aspect ratio. 展开更多
关键词 ACCELERATION BOILING heat transfer MICROCHANNEL NANOFLUID SWIRL microchannels
原文传递
Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
20
作者 杨刚 郑庭 +1 位作者 程启昊 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期516-525,共10页
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear... Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective. 展开更多
关键词 molecular dynamics simulation non-Newtonian fluid MICROCHANNEL SHEAR-THINNING
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部