A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the...A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively.展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world,...Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.展开更多
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers w...This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).展开更多
Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection fil...Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.展开更多
The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline si...The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.展开更多
This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary ...This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.展开更多
This paper investigates several pretreatment techniques used to reduce the phosphorus contamination between solar cells. They include hydrogen plasma pretreatment, deposition of a p-type doped layer, i-a-Si:H or μc...This paper investigates several pretreatment techniques used to reduce the phosphorus contamination between solar cells. They include hydrogen plasma pretreatment, deposition of a p-type doped layer, i-a-Si:H or μc-Si:H covering layer between solar cells. Their effectiveness for the pretreatment is evaluated by means of phosphorus concentration in films, the dark conductivity of p-layer properties and cell performance.展开更多
We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction st...We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.展开更多
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l...A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.展开更多
A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with...A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with the change of the pressure.The results measured by Raman scattering spectra,X-ray diffraction and FTIR all proved the evident crystallization of the materials.Treating the p/i interface by hydrogen has a great improving effect on the performance of the microcrystalline silicon (μc-Si) p-i-n solar cells if the treatment time was appropriate.An efficiency of 4.24% for μc-Si p-i-n solar cells deposited by VHF-PECVD was firstly obtained.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ...A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.展开更多
Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing ...Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing the efficiency of these cells could expand the development choices for HIT solar cells.We presented a detailed investigation of the emitter a-Si:H(n)lay-er of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration,thickness,band gap width,electron affinity,hole mobility,and so on.Solar cell composition:(ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO).The results reveal optimal values for the investigated parameters,for which the highest computed efficiency is 26.45%when lighted from the top only and 21.21%when illuminated from the back only.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen ...Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.展开更多
Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preven...Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.展开更多
Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of an...Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of annealing temperature on the microstructure and morphology were investigated. The AlC poly-Si thin films were characterized by XRD, Raman and SEM. It is found that a-Si thin film has a amorphous structure after annealing at 400℃ for 20 min, a-Si films begin to crystallize after annealing at 450 ℃ for 20 min, and the crystallinity of a-Si thin films is enhanced obviously with the increment of annealing termperature.展开更多
We focused on developing penetration-type semitransparent thin-film solar cells(STSCs) using hydrogenated amorphous Si(a-Si:H) for a building-integrated photovoltaic(BIPV) window system. Instead of conventional p-type...We focused on developing penetration-type semitransparent thin-film solar cells(STSCs) using hydrogenated amorphous Si(a-Si:H) for a building-integrated photovoltaic(BIPV) window system. Instead of conventional p-type a-Si:H, p-type hydrogenated microcrystalline Si oxide(p-μc-SiOx:H) was introduced for a wide-bandgap and conductive window layer. For these purposes, we tuned the CO2/SiH4 flow ratio(R) during p-μc-SiOx:H deposition. The film crystallinity decreased from 50% to 13% as R increased from 0.2 to 1.2. At the optimized R of 0.6, the quantum efficiency was improved under short wavelengths by the suppression of p-type layer parasitic absorption. The series resistance was well controlled to avoid fill factor loss at R = 0.6. Furthermore, we introduced dual buffers comprising p-a-SiOx:H/i-a-Si:H at the p/i interface to alleviate interfacial energy-band mismatch. The a-Si:H STSCs with the suggested window and dual buffers showed improvements in transmittance and efficiency from 22.9% to 29.3% and from 4.62% to 6.41%, respectively, compared to the STSC using a pristine p-a-Si:H window.展开更多
文摘A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively.
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
文摘Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.
基金supported by the National Basic Research Program of China (Grant Nos 2006CB202602 and 2006CB202603)the Tianjin Assistant Foundation for the National Basic Research Program of China (Grant No 07QTPTJC29500)the Natural Science Foundation of Tianjin (Grant No 07JCYBJC04000)
文摘This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).
文摘Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.
文摘The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.
基金Project supported by Hi-Tech Research and Development Program of China (Grant No 2007AA05Z436)Science and Technology Support Project of Tianjin (Grant No 08ZCKFGX03500)+4 种基金National Basic Research Program of China (Grant Nos 2006CB202602 and 2006CB202603)National Natural Science Foundation of China (Grant No 60506003)Starting Project of Nankai University (Grant No J02031)International Cooperation Project Between China-Greece Government (Grant No 2006DFA62390)Program for New Century Excellent Talents in University of China (NCET)
文摘This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos.2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin of China (Grant No.08ZCKFGX03500)+3 种基金National Basic Research Program of China (Grant Nos.2006CB202602 and 2006CB202603)National Natural Science Foundation of China (Grant No.60976051)International Cooperation Project between China-Greece Government (Grant Nos.2006DFA62390 and 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No.NCET-08-0295)
文摘This paper investigates several pretreatment techniques used to reduce the phosphorus contamination between solar cells. They include hydrogen plasma pretreatment, deposition of a p-type doped layer, i-a-Si:H or μc-Si:H covering layer between solar cells. Their effectiveness for the pretreatment is evaluated by means of phosphorus concentration in films, the dark conductivity of p-layer properties and cell performance.
基金supported by the Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)the Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+2 种基金the National Natural Science Foundation of China (Grant No. 60976051)the International Cooperation Project between China–Greece Government (GrantNo. 2009DFA62580)the Program for New Century Excellent Talents in University of China (NCET-08-0295)
文摘We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z219)the Jiangsu Innovation Program for Graduate Education, China (Grant No. CXZZ11 0206)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
文摘A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with the change of the pressure.The results measured by Raman scattering spectra,X-ray diffraction and FTIR all proved the evident crystallization of the materials.Treating the p/i interface by hydrogen has a great improving effect on the performance of the microcrystalline silicon (μc-Si) p-i-n solar cells if the treatment time was appropriate.An efficiency of 4.24% for μc-Si p-i-n solar cells deposited by VHF-PECVD was firstly obtained.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
基金This project was financially supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (No.0329571B).
文摘A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.
文摘Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing the efficiency of these cells could expand the development choices for HIT solar cells.We presented a detailed investigation of the emitter a-Si:H(n)lay-er of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration,thickness,band gap width,electron affinity,hole mobility,and so on.Solar cell composition:(ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO).The results reveal optimal values for the investigated parameters,for which the highest computed efficiency is 26.45%when lighted from the top only and 21.21%when illuminated from the back only.
基金the State Key Development Program for Basic Research of China(Nos.2006CB202602,2006CB202603)Tianjin Assistant Foundation for the National Basic Research Program of China(No.07QTPTJC29500)~~
文摘Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.
文摘Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.
文摘Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of annealing temperature on the microstructure and morphology were investigated. The AlC poly-Si thin films were characterized by XRD, Raman and SEM. It is found that a-Si thin film has a amorphous structure after annealing at 400℃ for 20 min, a-Si films begin to crystallize after annealing at 450 ℃ for 20 min, and the crystallinity of a-Si thin films is enhanced obviously with the increment of annealing termperature.
基金supported by the Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) under grant Nos. 20163010012560 and 20172010104940
文摘We focused on developing penetration-type semitransparent thin-film solar cells(STSCs) using hydrogenated amorphous Si(a-Si:H) for a building-integrated photovoltaic(BIPV) window system. Instead of conventional p-type a-Si:H, p-type hydrogenated microcrystalline Si oxide(p-μc-SiOx:H) was introduced for a wide-bandgap and conductive window layer. For these purposes, we tuned the CO2/SiH4 flow ratio(R) during p-μc-SiOx:H deposition. The film crystallinity decreased from 50% to 13% as R increased from 0.2 to 1.2. At the optimized R of 0.6, the quantum efficiency was improved under short wavelengths by the suppression of p-type layer parasitic absorption. The series resistance was well controlled to avoid fill factor loss at R = 0.6. Furthermore, we introduced dual buffers comprising p-a-SiOx:H/i-a-Si:H at the p/i interface to alleviate interfacial energy-band mismatch. The a-Si:H STSCs with the suggested window and dual buffers showed improvements in transmittance and efficiency from 22.9% to 29.3% and from 4.62% to 6.41%, respectively, compared to the STSC using a pristine p-a-Si:H window.