CuO nanoparticles were synthesized by using microreactors made of Triton X-100/n-hextnol/cyclohexane/water W/O microemulsion system. Basic synthesis parameters were determined. The results of thermo gravimetric/differ...CuO nanoparticles were synthesized by using microreactors made of Triton X-100/n-hextnol/cyclohexane/water W/O microemulsion system. Basic synthesis parameters were determined. The results of thermo gravimetric/differential thermal analysis(TG/DTA) of the precursor products indicated that the proper calcination temperature was about 500 ℃. The nanoparticles were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-visible spectra. It was indicated that the grain size was highly dependent on the ratio of water to surfactant(R). With the R value increasing, the particles size became larger.展开更多
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20132124120003)
文摘CuO nanoparticles were synthesized by using microreactors made of Triton X-100/n-hextnol/cyclohexane/water W/O microemulsion system. Basic synthesis parameters were determined. The results of thermo gravimetric/differential thermal analysis(TG/DTA) of the precursor products indicated that the proper calcination temperature was about 500 ℃. The nanoparticles were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-visible spectra. It was indicated that the grain size was highly dependent on the ratio of water to surfactant(R). With the R value increasing, the particles size became larger.