期刊文献+
共找到275篇文章
< 1 2 14 >
每页显示 20 50 100
Experimental Investigation of a Phase-Change Material’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds
1
作者 Karim Choubani Ons Ghriss +2 位作者 Nashmi H.Alrasheedi Sirin Dhaoui Abdallah Bouabidi 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期341-358,共18页
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us... Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom. 展开更多
关键词 Smart salt-gradient solar pond phase-change material experimental investigation stability of solar ponds
下载PDF
Universal memory based on phase-change materials:From phase-change random access memory to optoelectronic hybrid storage 被引量:2
2
作者 Bo Liu Tao Wei +5 位作者 Jing Hu Wanfei Li Yun Ling Qianqian Liu Miao Cheng Zhitang Song 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期128-149,共22页
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,... The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well. 展开更多
关键词 universal memory optoelectronic hybrid storage phase-change material phase-change random access memory
下载PDF
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing 被引量:2
3
作者 Wen Zhou Xueyang Shen +2 位作者 Xiaolong Yang Jiangjing Wang Wei Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期2-27,共26页
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I... In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms. 展开更多
关键词 nanofabrication silicon photonics phase-change materials non-volatile photonic memory neuromorphic photonic computing
下载PDF
Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System 被引量:2
4
作者 Wei Kang Yiqiang Zhao +3 位作者 Xueheng Jia Lin Hao Leping Dang Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2021年第1期55-63,共9页
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic... A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature. 展开更多
关键词 Lithium-ion battery phase-change material PARAFFIN Silicon carbide Thermal runaway
下载PDF
Design of broadband achromatic metasurface device based on phase-change material Ge_(2)Sb_(2)Te_(5) 被引量:1
5
作者 Shuyuan Lv Xinhui Li +1 位作者 Wenfeng Luo Jie Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期259-265,共7页
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a... Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems. 展开更多
关键词 metasurface optical device phase-change material ACHROMATIC
下载PDF
An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 被引量:1
6
作者 Qing Hu Boyi Dong +5 位作者 Lun Wang Enming Huang Hao Tong Yuhui He Ming Xu Xiangshui Miao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期49-54,共6页
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu... Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition. 展开更多
关键词 superlattice-like phase-change material artificial synapse low-power consumption
下载PDF
Melting and Solidification Heat Transfer Characteristics of a Phase-Change Material in a Latent Heat Storage Vessel: Effects of a Perforated Partition Plate and Metal Fiber
7
作者 Than Tun Naing Akihiko Horibe +1 位作者 Naoto Haruki Yutaka Yamada 《Journal of Power and Energy Engineering》 2017年第8期13-29,共17页
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ... Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM. 展开更多
关键词 Heat Storage VESSEL SOLIDIFIED Height phase-change material (PCM) Mixture Perforated PARTITION PLATE Metal Fiber
下载PDF
Effect of Nanomaterials Addition to Phase Change Materials on Heat Transfer in Solar Panels under Iraqi Atmospheric Conditions 被引量:1
8
作者 Majid Ahmed Mohammed Abdullah Talab Derea +2 位作者 Mohammed Yaseen Lafta Obed Majeed Ali Omar Rafae Alomar 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期215-226,共12页
It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include... It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include a large capacity for absorbing heat and a large capacity for releasing heat when the phase changes;however,these materials have a low thermal conductivity.This paper presents the results of an experimental study that investigated the impact that nanoparticles of copper oxide had on reducing the temperature of solar panels.The phase change substance that was used was determined to be beeswax.The impact of adding nanoscale copper oxide at a concentration of 0.05%of the total mass of wax was investigated and compared to a reference solar panel that did not contain any nanoscale additions.The findings demonstrated that the incorporation of nanoscale copper oxide brought about a reduction of three℃ in the plate’s average temperature as well as a one percent improvement in its electrical efficiency.In cases where it seems that the use of nanoparticles might potentially enhance the performance of integrated solar energy systems that contain phase change. 展开更多
关键词 Copper oxide nanoparticles NANOPARTICLE BEESWAX thermal conductivity phase-change materials
下载PDF
益生菌微胶囊技术的优缺点及在食品中的应用
9
作者 田缘 闫更轩 +5 位作者 段文靖 邓星星 夏海华 吴皓琼 田洁萍 于冲 《食品研究与开发》 2025年第1期217-224,共8页
随着人们对功能食品的需求不断提升,益生菌产品的销售额在世界范围内有了巨大的增长。微胶囊技术可以为益生菌提供物理屏障,有效减少益生菌损伤、提高存活率,使其到达特定位置释放并发挥作用,使其在食品工业中被广泛应用。该文综述了益... 随着人们对功能食品的需求不断提升,益生菌产品的销售额在世界范围内有了巨大的增长。微胶囊技术可以为益生菌提供物理屏障,有效减少益生菌损伤、提高存活率,使其到达特定位置释放并发挥作用,使其在食品工业中被广泛应用。该文综述了益生菌微胶囊目前的研究进展,对几种常见的益生菌微胶囊技术的优缺点进行比较分析,介绍了益生菌微胶囊技术在功能食品中的应用情况,并基于此对其未来的发展前景进行展望。 展开更多
关键词 益生菌 微胶囊技术 功能食品 包封 壁材
下载PDF
Numerical Investigation on Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in a Rectangular Minichannel
10
作者 WANG Zhibin LI Zilong +2 位作者 JIA Lisi DING Bin CHEN Ying 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期564-577,共14页
Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer ... Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer process.In this work,the Discrete Phase Model(DPM) based on the Euler-Lagrangian method is used to numerically investigate the convective heat transfer characteristics of MEPCMS flowing through a rectangular minichannel with constant heat flux.The results show that particles of MEPCMS are mainly subjected to drag force during the flow.Even so,they can migrate from the high-temperature region to the low-temperature region driven by the thermophoretic force,affecting the particle distribution and phase change process.Moreover,the Nux of the MEPCMS fluctuates due to particle phase change with varying specific heat capacities.Specifically,the value increases first,then decreases,and eventually increases again until it approaches the fully developed value of the pure base fluid as the particles gradually melt.Furthermore,the heat transfer performance of the MEPCMS is influenced by the combination of fluid inlet temperature fluid inlet velocity(v),and mass concentration(c_(m)) of MEPCM particles.The result shows that the maximum reduction of the maximum bottom wall temperature difference(ΔT_(w)) is 23.98% at T_(in)=293.15 K,v=0.15 m·s^(-1),c_(m)=10%. 展开更多
关键词 microencapsulated Phase Change material Slurry(MPCMS) Discrete Phase Model(DPM) particle-fluid interaction force minichannel heat sink THERMOPHORESIS
原文传递
A one-step method for producing microencapsulated phase change materials 被引量:14
11
作者 Yi Jin Waipeng Lee +1 位作者 Zenfira Musina Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2010年第6期588-590,共3页
This short communication reports our recent work on the synthesis and characterisation ofmicrocapsules of phase change materials using silica as the shell material through a one-step method. The method uses no surfact... This short communication reports our recent work on the synthesis and characterisation ofmicrocapsules of phase change materials using silica as the shell material through a one-step method. The method uses no surfactants or dispersants for stabilising the capsules. The results show that the one-step method allows the tuning of the size and polydispersity of the capsules, and the use of different core materials. Analyses of the capsules show that they contain about 65% phase change materials. The results also suggest no need for a stabilising agent due to self-stabilisation by the amine groups. Further work is underway to investigate the mechanical and thermal properties of the microcapsules and the scale-up of the method. 展开更多
关键词 microencapsulation Phase change materials One-step method Thermal energy storage
原文传递
Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials 被引量:6
12
作者 Ximin Tian Zhi-Yuan Li 《Photonics Research》 SCIE EI 2016年第4期146-152,共7页
We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect... We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers. 展开更多
关键词 MMPA Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials GST
原文传递
Tunable near-infrared plasmonic perfect absorber based on phase-change materials 被引量:6
13
作者 Yiguo Chen Xiong Li +2 位作者 Xiangang Luo Stefan AMaier Minghui Hong 《Photonics Research》 SCIE EI 2015年第3期54-57,共4页
A tunable plasmonic perfect absorber with a tuning range of 650 nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration.The absorption at the p... A tunable plasmonic perfect absorber with a tuning range of 650 nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration.The absorption at the plasmonic resonance is kept above 0.96 across the whole tuning range.In this work we study this extraordinary optical response numerically and reveal the geometric conditions which support this phenomenon.This work shows a promising route to achieve tunable plasmonic devices for multi-band optical modulation,communication,and thermal imaging. 展开更多
关键词 GST Tunable near-infrared plasmonic perfect absorber based on phase-change materials
原文传递
Bioinspired solar anti-icing/de-icing surfaces based on phase-change materials 被引量:2
14
作者 Siyu Sheng Zhicheng Zhu +3 位作者 Zhanhui Wang Tongtong Hao Zhiyuan He Jianjun Wang 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1369-1376,共8页
Solar anti-icing/de-icing is an environmentally friendly way to convert light energy into heat with the purpose of melting/removing ice. However, the inherent intermittency of solar irradiation limits the application ... Solar anti-icing/de-icing is an environmentally friendly way to convert light energy into heat with the purpose of melting/removing ice. However, the inherent intermittency of solar irradiation limits the application of solar-thermal energy-conversion technologies, when continuous de-icing is required. Herein, we investigate a solar phase-change material(SPCM) that consists of expanded graphite(EG)/paraffin/polydimethylsiloxane(PDMS), which can not only perform the solar-thermal conversion but also release/store thermal energy. Under sunlight, the SPCM effectively collects and converts the light energy into thermal energy for later antiicing/de-icing. To prepare for a no-light period, e.g., in the evening, the converted thermal energy can be stored in the SPCM using a phase transition. In this way, the energy can be released when needed to keep the temperature of a surface from freezing. The SPCM surface shows excellent anti-icing/de-icing properties such as a long droplet freeze-delay time(td> 2 h), even at an ultra-low temperature(-40℃), using only the light of one sun. This freeze-delay time is much longer than that for a surface without PCM. The tested SPCM surfaces show a high de-icing rate(2.21 kg m^(-2)h^(-1)) under real-life conditions. In addition, the SPCM shows a high de-icing rate and excellent durability. This study provides a promising route for the utilization of solar energy in anti-icing/de-icing applications. 展开更多
关键词 BIOINSPIRED phase-change materials anti-icing/deicing solar energy MULTIFUNCTIONAL
原文传递
Microencapsulation of stearic acid with polymethylmethacrylate using iron(Ⅲ) chloride as photo-initiator for thermal energy storage 被引量:4
15
作者 Ting Zhang Minmin Chen +1 位作者 Yu Zhang Yi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1524-1532,共9页
Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoiniti... Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite. 展开更多
关键词 Thermal energy storage Phase change material microencapsulation Thermodynamic properties Synthesis Photochemistry
下载PDF
Investigation of phase-change materials for interior temperature regulation in public transport 被引量:1
16
作者 Md Nahidul Islam Md Nahid Hossain Dewan HasanAhmed 《Clean Energy》 EI 2022年第1期178-192,共15页
Regulating the indoor temperature of public transport on hot sunny days is a prime concern,as both the external and internal heat sources play an active role in heat gain.Experimental studies have been carried out on ... Regulating the indoor temperature of public transport on hot sunny days is a prime concern,as both the external and internal heat sources play an active role in heat gain.Experimental studies have been carried out on a bus model using sodium sulphate decahydrate as a phase-change material(PCM)that is placed in between the ceiling and the roof.Studies are conducted on a sunny day and also for different cases of external(300-W surface heater)and internal(25-W light bulb)heat sources.The results show that PCM,in the presence of an external heat source,can help to keep the indoor temperature lower and delay the time period for increasing the temperature by absorbing heat during the phase change.On the other hand,the presence of the internal heat source contributes to a detrimental effect on the indoor temperature,which gradually increases with the elapse of time.With the combination of the external and internal heat sources,it is found that the internal heat source plays a dominating factor to raise the indoor temperature.It is revealed from the experimental results that a 12.7-mm single layer and a single PCM are not enough to counter the internal heat of 25 W unless the thickness of the PCM layer is increased to delay the increase in the indoor temperature.An additional PCM layer with a lower melting temperature could be placed at the inner portion of the ceiling to have effective thermal-energy storage by absorbing the substantial heat gain from the internal heat sources. 展开更多
关键词 latent heat sodium sulphate decahydrate phase-change material TRANSPORTATION thermal-energy storage
原文传递
多重包埋技术在微囊化姜黄素中的应用
17
作者 周迪 王永奇 +3 位作者 许新德 白亚龙 姚可欣 商景天 《中国食品添加剂》 CAS 2024年第3期188-194,共7页
姜黄素较差的溶解性和对氧化的高度敏感性,使其存在很大的应用局限,为此对多重包埋技术在微囊化姜黄素中的应用进行了研究。通过单因素试验,分析溶剂类别、溶解温度和时间以及油相蠕动泵频率、真空乳化机转速等因素对微囊化姜黄素产品... 姜黄素较差的溶解性和对氧化的高度敏感性,使其存在很大的应用局限,为此对多重包埋技术在微囊化姜黄素中的应用进行了研究。通过单因素试验,分析溶剂类别、溶解温度和时间以及油相蠕动泵频率、真空乳化机转速等因素对微囊化姜黄素产品的影响,确定了姜黄素最佳溶解工艺条件和一次包埋工艺条件;然后通过正交实验分析,针对产品感观质量和稳定性等因素,确定了合理的多重包埋技术微囊化姜黄素10%冷水溶性(Cold Water Solubility,CWS)产品配方。结果表明:最佳工艺条件是以丙酮作溶剂,溶解温度55℃、时间少于45 min,蠕动泵频率20 Hz,真空乳化机转速控制在15000 r/min;产品配方为12%姜黄素、25%聚乙二醇6000、3.5%吐温-60、35%辛烯基琥珀酸淀粉钠、4.5%dl-α生育酚、20%玉米淀粉。此项技术的应用很大程度上提高了姜黄素的水溶性、稳定性与生物利用度,拓宽了其应用范围和领域。 展开更多
关键词 姜黄素 壁材 纳米分散 微胶囊 多重包埋
下载PDF
建筑用CA-SA@SiO_(2)相变微胶囊制备及其性能优化研究
18
作者 刘凤利 李俏莉 +1 位作者 白建侠 王亚光 《功能材料》 CAS CSCD 北大核心 2024年第8期8096-8102,共7页
为解决脂肪酸相变温度高于建筑应用要求,以及已有脂肪酸相变微胶囊包覆率和相变潜热低的问题,首先制备了二元相变材料癸酸-硬脂酸,热性能结果表明,癸酸-硬脂酸相变温度和相变潜热为24.28℃和178.21 J/g,满足建筑应用要求。在此基础上以S... 为解决脂肪酸相变温度高于建筑应用要求,以及已有脂肪酸相变微胶囊包覆率和相变潜热低的问题,首先制备了二元相变材料癸酸-硬脂酸,热性能结果表明,癸酸-硬脂酸相变温度和相变潜热为24.28℃和178.21 J/g,满足建筑应用要求。在此基础上以SiO_(2)为壁材,采用溶胶凝胶法对癸酸-硬脂酸进行封装,制备不同芯壁比的CA-SA@SiO_(2)相变微胶囊,并对其微观形貌、粒径大小、热性能、化学稳定性及抗渗漏性能进行表征。结果表明,芯壁比直接影响相变微胶囊的各项性能,其中最优芯壁比为50∶50,此时微胶囊呈球形且光滑致密,粒径范围为2~500μm,主要集中于50μm以下,壁材仅靠物理作用包覆芯材,微胶囊化后壁材可以提高芯材热稳定性,且热分解温度明显高于墙体材料使用环境,平衡渗漏率仅为4.53%,相变温度为24.63℃,处于人体舒适范围内,相变潜热和包覆率为138.16 J/g和77%,有效解决了相变温度高和包覆率、相变潜热低的问题,为相变储能建筑围护结构提供适宜温区、高能效密度与高稳定性兼容的新材料。 展开更多
关键词 二元脂肪酸 溶胶凝胶法 相变微胶囊 微观特性 热性能
下载PDF
微胶囊相变材料改良粉砂土的导热系数及预测模型
19
作者 唐少容 殷磊 +1 位作者 杨强 柯德秀 《中国粉体技术》 CAS CSCD 2024年第3期112-123,共12页
【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对... 【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对mPCM改良粉砂土进行导热系数实验和内部结构表征;采用多元线性回归和支持向量机(support vector machine,SVM)方法分别建立mPCM改良粉砂土的导热系数预测模型。【结果】mPCM改良粉砂土导热系数与含水率、干密度、mPCM掺量有关,且受冰水相对含量、冰水相变潜热、mPCM相变潜热和mPCM填充密实作用的影响,具有明显的温度效应;mPCM改良粉砂土导热系数的变化与实验温度和mPCM相变温度有关,可分为快速降低、缓慢降低和逐步上升3个阶段;多元线性回归和SVM模型均能较好地拟合预测mPCM改良粉砂土的导热系数,但SVM模型更适用于表征mPCM改良粉砂土导热系数各影响因素间的非线性关系。【结论】mPCM改良粉砂土的导热系数提高能够有效调控渠基土温度场,减轻渠道冻害,且SVM模型能更加准确地进行导热系数预测。 展开更多
关键词 微胶囊相变材料 粉砂土 导热系数 预测模型 多元线性回归 支持向量机
下载PDF
相变微胶囊保温砂浆的制备及性能 被引量:1
20
作者 龙勇 王宇 +1 位作者 刘天乐 王亚洲 《材料导报》 EI CAS CSCD 北大核心 2024年第9期268-273,共6页
为减少建筑物的能耗,响应“碳中和”“碳达峰”国家政策,本工作基于原位聚合法,以正十八烷-正二十烷混合物为二元相变芯材,甲基丙烯酸甲酯(PMMA)为外层壁材,制备了一种适用于保温节能水泥砂浆的相变微胶囊(MiPCM)。MiPCM通过内部芯材在... 为减少建筑物的能耗,响应“碳中和”“碳达峰”国家政策,本工作基于原位聚合法,以正十八烷-正二十烷混合物为二元相变芯材,甲基丙烯酸甲酯(PMMA)为外层壁材,制备了一种适用于保温节能水泥砂浆的相变微胶囊(MiPCM)。MiPCM通过内部芯材在相变过程中吸热或放热的特性,降低外界环境对水泥砂浆内部温度的影响,从而减少人们对空调等电器的依赖程度,达到节能减排的目的。MiPCM呈球霰状,无团聚现象,具备明显的芯-壁结构,其相变温度区间和潜热分别为17.8~36.7℃和74.72 J/g。TG分析和热循环试验结果表明,MiPCM具备良好的热稳定性。将MiPCM掺加到水泥砂浆中进行温升实验。结果表明,在红外热源照射环境中,MiPCM明显减缓了水泥砂浆中心温度的变化速率,水泥砂浆石的峰值温度降低了7℃。因此,以MiPCM为外加剂的水泥砂浆符合保温节能的设计理念。 展开更多
关键词 相变材料 微胶囊技术 水泥砂浆 保温节能
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部