Hydrogels are three-dimensional platforms that serve as substitutes for native extracellular matrix.These materials are starting to play important roles in regenerative medicine because of their similarities to native...Hydrogels are three-dimensional platforms that serve as substitutes for native extracellular matrix.These materials are starting to play important roles in regenerative medicine because of their similarities to native matrix in water content and flexibility.It would be very advantagoues for researchers to be able to regulate cell behavior and fate with specific hydrogels that have tunable mechanical properties as biophysical cues.Recent developments in dynamic chemistry have yielded designs of adaptable hydrogels that mimic dynamic nature of extracellular matrix.The current review provides a comprehensive overview for adaptable hydrogel in regenerative medicine as follows.First,we outline strategies to design adaptable hydrogel network with reversible linkages according to previous findings in supramolecular chemistry and dynamic covalent chemistry.Next,we describe the mechanism of dynamic mechanical microenvironment influence cell behaviors and fate,including how stress relaxation influences on cell behavior and how mechanosignals regulate matrix remodeling.Finally,we highlight techniques such as bioprinting which utilize adaptable hydrogel in regenerative medicine.We conclude by discussing the limitations and challenges for adaptable hydrogel,and we present perspectives for future studies.展开更多
Regenerative medicine has rapidly developed over the past decade and created new opportunities to repair or replace tissue or organ function lost because of congenital defects, age, diseases, or serious damage (Cheng...Regenerative medicine has rapidly developed over the past decade and created new opportunities to repair or replace tissue or organ function lost because of congenital defects, age, diseases, or serious damage (Cheng et al., 2016a; Cheng et al., 2016b). Regenerative medicine strategies in- clude the transplantation of bioactive factors, stem cells, or biomaterials, even the induced regeneration in a de novo, depending on the application (Fu, 2014a; Huang and Fu, 2014). However, there are several limitations to the use of regenerative medicine in the clinic with respect to using stem cells and biomaterials.展开更多
基金support of the National Key Research and Development Program of China(2016YFE0132700)National Natural Science Foundation of China(51822306,51673171)+1 种基金Science Technology Department of Zhejiang Province(2020C03042)the Fundamental Research Funds for the Central Universities of China.
文摘Hydrogels are three-dimensional platforms that serve as substitutes for native extracellular matrix.These materials are starting to play important roles in regenerative medicine because of their similarities to native matrix in water content and flexibility.It would be very advantagoues for researchers to be able to regulate cell behavior and fate with specific hydrogels that have tunable mechanical properties as biophysical cues.Recent developments in dynamic chemistry have yielded designs of adaptable hydrogels that mimic dynamic nature of extracellular matrix.The current review provides a comprehensive overview for adaptable hydrogel in regenerative medicine as follows.First,we outline strategies to design adaptable hydrogel network with reversible linkages according to previous findings in supramolecular chemistry and dynamic covalent chemistry.Next,we describe the mechanism of dynamic mechanical microenvironment influence cell behaviors and fate,including how stress relaxation influences on cell behavior and how mechanosignals regulate matrix remodeling.Finally,we highlight techniques such as bioprinting which utilize adaptable hydrogel in regenerative medicine.We conclude by discussing the limitations and challenges for adaptable hydrogel,and we present perspectives for future studies.
基金supported in part by the National Nature Science Foundation of China (81121004, 81230041, 81171798, 81171812, 81272105, 81671924)the National Basic Science and Development Programme (2012CB518105)the National Science and Technology Major Project (2011ZXJ07104B-03B)
文摘Regenerative medicine has rapidly developed over the past decade and created new opportunities to repair or replace tissue or organ function lost because of congenital defects, age, diseases, or serious damage (Cheng et al., 2016a; Cheng et al., 2016b). Regenerative medicine strategies in- clude the transplantation of bioactive factors, stem cells, or biomaterials, even the induced regeneration in a de novo, depending on the application (Fu, 2014a; Huang and Fu, 2014). However, there are several limitations to the use of regenerative medicine in the clinic with respect to using stem cells and biomaterials.