Fluid manipulation plays an important role in biomedical applications such as biochemical assays,medical diag-nostics,and drug development.Programmable fluidic manipulation at the microscale is highly desired in both ...Fluid manipulation plays an important role in biomedical applications such as biochemical assays,medical diag-nostics,and drug development.Programmable fluidic manipulation at the microscale is highly desired in both fundamental and practical aspects.In this paper,we summarize some of the latest studies that achieve pro-grammable fluidic manipulation through intricate capillaric circuits design,construction of biomimetic metasur-face,and responsive surface wettability control.We highlight the working principle of each system and concisely discuss their design criterion,technical improvements,and implications for future study.We envision that with multidisciplinary efforts,microfluidics would continue to bring vast opportunities to biomedical fields and make contributions to human health.展开更多
在电流变液发明后的70余年中,学者们相继提出了纤维理论、"水桥"理论、双电层理论和介电理论等传统理论模型.然而,力学性能较差,严重制约了电流变液的工程化应用.近几年,随着巨电流变液和极性型电流变液等低场高屈服强度的新...在电流变液发明后的70余年中,学者们相继提出了纤维理论、"水桥"理论、双电层理论和介电理论等传统理论模型.然而,力学性能较差,严重制约了电流变液的工程化应用.近几年,随着巨电流变液和极性型电流变液等低场高屈服强度的新型电流变液的发明,电流变液屈服强度均超过了100 k Pa,电流变液迎来了一个新的工业化应用契机.但是,电流变液的沉降性及再分散性等基础性和应用性问题仍然制约了其广泛应用.本文回顾了电流变液的成分、宏观性质、微观机制及其应用的发展,重点分析了巨电流变效应及其在智能微流控中的研究.总结了电流变液的研究现状及未来发展方向,其中对电流变液稳定性和服役与失效的研究将成为未来研究的主要方向.随着上述问题的解决完善将加速电流变液的工业化进程.展开更多
基金supported by the National Key Research and Develop-ment Program of China(2020YFB1313100)the National Natural Science Foundation of China(22002018 and 82102511)the Natural Science Foundation of Jiangsu(BK20210021).
文摘Fluid manipulation plays an important role in biomedical applications such as biochemical assays,medical diag-nostics,and drug development.Programmable fluidic manipulation at the microscale is highly desired in both fundamental and practical aspects.In this paper,we summarize some of the latest studies that achieve pro-grammable fluidic manipulation through intricate capillaric circuits design,construction of biomimetic metasur-face,and responsive surface wettability control.We highlight the working principle of each system and concisely discuss their design criterion,technical improvements,and implications for future study.We envision that with multidisciplinary efforts,microfluidics would continue to bring vast opportunities to biomedical fields and make contributions to human health.
文摘在电流变液发明后的70余年中,学者们相继提出了纤维理论、"水桥"理论、双电层理论和介电理论等传统理论模型.然而,力学性能较差,严重制约了电流变液的工程化应用.近几年,随着巨电流变液和极性型电流变液等低场高屈服强度的新型电流变液的发明,电流变液屈服强度均超过了100 k Pa,电流变液迎来了一个新的工业化应用契机.但是,电流变液的沉降性及再分散性等基础性和应用性问题仍然制约了其广泛应用.本文回顾了电流变液的成分、宏观性质、微观机制及其应用的发展,重点分析了巨电流变效应及其在智能微流控中的研究.总结了电流变液的研究现状及未来发展方向,其中对电流变液稳定性和服役与失效的研究将成为未来研究的主要方向.随着上述问题的解决完善将加速电流变液的工业化进程.