期刊文献+
共找到486篇文章
< 1 2 25 >
每页显示 20 50 100
Green microfluidics in microchemical engineering for carbon neutrality 被引量:1
1
作者 Qingming Ma Jianhong Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期332-345,共14页
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss... The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed. 展开更多
关键词 Microchemical engineering Carbon neutrality microfluidics Aqueous two-phase systems(ATPSs) ENVIRONMENT Chemical processes
下载PDF
Thermal and ignition properties of hexanitrostilbene(HNS) microspheres prepared by droplet microfluidics 被引量:1
2
作者 Rui-shan Han Fei-peng Lu +6 位作者 Fang Zhang Yan-lan Wang Mi Zhou Guo-sheng Qin Jian-hua Chen Hai-fu Wang En-yi Chu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期166-173,共8页
HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were... HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI. 展开更多
关键词 microfluidics HNS microspheres Thermal stability Ignition threshold
下载PDF
An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening
3
作者 Biao Wang Bang-Shun He +6 位作者 Xiao-Lan Ruan Jiang Zhu Rui Hu Jie Wang Ying Li Yun-Huang Yang Mai-Li Liu 《Military Medical Research》 SCIE CAS CSCD 2023年第3期325-341,共17页
Background:Tumor cell heterogeneity mediated drug resistance has been recognized as the stumbling block of cancer treatment.Elucidating the cytotoxicity of anticancer drugs at single-cell level in a high-throughput wa... Background:Tumor cell heterogeneity mediated drug resistance has been recognized as the stumbling block of cancer treatment.Elucidating the cytotoxicity of anticancer drugs at single-cell level in a high-throughput way is thus of great value for developing precision therapy.However,current techniques suffer from limitations in dynamically characterizing the responses of thousands of single cells or cell clones presented to multiple drug conditions.Methods:We developed a new microfluidics-based“SMART”platform that is Simple to operate,able to generate a Massive single-cell array and Multiplex drug concentrations,capable of keeping cells Alive,Retainable and Trackable in the microchambers.These features are achieved by integrating a Microfluidic chamber Array(4320 units)and a sixConcentration gradient generator(MAC),which enables highly efficient analysis of leukemia drug effects on single cells and cell clones in a high-throughput way.Results:A simple procedure produces 6 on-chip drug gradients to treat more than 3000 single cells or single-cell derived clones and thus allows an efficient and precise analysis of cell heterogeneity.The statistic results reveal that Imatinib(Ima)and Resveratrol(Res)combination treatment on single cells or clones is much more efficient than Ima or Res single drug treatment,indicated by the markedly reduced half maximal inhibitory concentration(IC50).Additionally,single-cell derived clones demonstrate a higher IC_(50) in each drug treatment compared to single cells.Moreover,primary cells isolated from two leukemia patients are also found with apparent heterogeneity upon drug treatment on MAC.Conclusions:This microfluidics-based“SMART”platform allows high-throughput single-cell capture and culture,dynamic drug-gradient treatment and cell response monitoring,which represents a new approach to efficiently investigate anticancer drug effects and should benefit drug discovery for leukemia and other cancers. 展开更多
关键词 microfluidics Single-cell analysis LEUKEMIA High-throughput drug screening Single-cell cloning
下载PDF
Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles
4
作者 Duanping Sun Ying Ma +3 位作者 Maoqiang Wu Zuanguang Chen Luyong Zhang Jing Lu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第4期340-354,共15页
Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circu... Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circulating tumor cells(CTCs)and extracellular vesicles(EVs)are two important components of circulating targets,carrying substantial disease-related molecular information and playing a key role in liquid biopsy.Aptamers are single-stranded oligonucleotides with superior affinity and specificity,and they can bind to targets by folding into unique tertiary structures.Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools.In this review,we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches.Then,we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection.Finally,we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications. 展开更多
关键词 APTAMER Microfluidic Circulating tumor cells Extracellular vesicles BIOANALYSIS
下载PDF
Junction matters in hydraulic circuit bio-design of microfluidics
5
作者 Yao Lin Dongliang He +9 位作者 Zerui Wu Yurou Yao Zhanhao Zhang Yuheng Qiu Shan Wei Guangzhu Shang Xingyue Lei Ping Wu Weiping Ding Liqun He 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第1期38-50,共13页
Microfluidic channels are at micrometer scales;thus,their fluid flows are laminar,resulting in the linear dependence of pressure drop on flow rate in the length of the channel.The ratio of the pressure drop to flow ra... Microfluidic channels are at micrometer scales;thus,their fluid flows are laminar,resulting in the linear dependence of pressure drop on flow rate in the length of the channel.The ratio of the pressure drop to flow rate,referred to as resistance,depends on channel size and dynamic viscosity.Usually,a microfluidic chip is analogous to an electric circuit in design,but the design is adjusted to optimize channel size.However,whereas voltage loss is negligible at the nodes of an electric circuit,hydraulic pressure drops at the nodes of microfluidic chips by a magnitude are comparable to the pressure drops in the straight channels.Here,we prove by experiment that one must fully consider the pressure drops at nodes so as to accurately design a precise microfluidic chip.In the process,we numerically calculated the pressure drops at hydraulic nodes and list their resistances in the range of flows as concerned.We resorted to machine learning to fit the calculated results for complex junctions.Finally,we obtained a library of node resistances for common junctions and used them to design three established chips that work for single-cell analysis and for precision allocation of solutes(in gradient and averaging concentration microfluidic networks).Endothelial cells were stimulated by generating concentrations of adriamycin hydrochloride from the last two microfluidic networks,and we analyzed the response of endothelial cells.The results indicate that consideration of junction resistances in design calculation brings experimental results closer to the design values than usual.This approach may therefore contribute to providing a platform for the precise design of organ chips. 展开更多
关键词 JUNCTIONS Hydraulics Microfluidic chip design
下载PDF
Advances in isolation and detection of circulating tumor cells based on microfluidics 被引量:4
6
作者 Dan Zou Daxiang Cui 《Cancer Biology & Medicine》 SCIE CAS CSCD 2018年第4期335-353,共19页
Circulating tumor cells(CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in ear... Circulating tumor cells(CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in early diagnosis of cancer and evaluation of cancer development. In recent years, CTC research has become a hotspot field wherein many novel CTC detection technologies based on microfluidics have been developed. Great advances have been made that exhibit obvious technical advantages, but cannot yet satisfy the current clinical requirements. In this study, we review the main advances in isolation and detection methods of CTC based on microfluidics research over several years, propose five technical indicators for evaluating these methods, and explore the application prospects. We also discuss the concepts, issues, approaches, advantages, limitations, and challenges with an aim of stimulating a broader interest in developing microfluidics-based CTC detection technology. 展开更多
关键词 CIRCULATING TUMOR cells ISOLATION and DETECTION microfluidics
下载PDF
Mechanically Strong Proteinaceous Fibers:Engineered Fabrication by Microfluidics 被引量:6
7
作者 Jing Sun Jingsi Chen +1 位作者 Kai Liu Hongbo Zeng 《Engineering》 SCIE EI 2021年第5期615-623,共9页
Lightweight and mechanically strong natural silk fibers have been extensively investigated over the past decades.Inspired by this research,many artificial spinning techniques(wet spinning,dry spinning,electrospinning,... Lightweight and mechanically strong natural silk fibers have been extensively investigated over the past decades.Inspired by this research,many artificial spinning techniques(wet spinning,dry spinning,electrospinning,etc.)have been developed to fabricate robust protein fibers.As the traditional spinning methods provide poor control over the as-spun fibers,microfluidics has been integrated with these techniques to allow the fabrication of biological fibers in a well-designed manner,with simplicity and cost efficiency.The mechanical behavior of the developed fibers can be precisely modulated by controlling the type iop and size of microfluidic channel,flow rate,and shear force.This technique has been successfully used to manufacture a broad range of protein fibers,and can accelerate the production and application of protein fibers in various fields.This review outlines recent progress in the design and fabrication of protein-based fibers based on microfluidics.We first briefly discuss the natural spider silk-spinning process and the microfluidics spinning process.Next,the fabrication and mechanical properties of regenerated protein fibers via microfluidics are discussed,followed by a discussion of recombinant protein fibers.Other sourced protein fibers are also reviewed in detail.Finally,a brief outlook on the development of microfluidic technology for producing protein fibers is presented. 展开更多
关键词 Proteinaceous fibers microfluidics Soft material BIOMATERIALS
下载PDF
Rapid preparation of size-tunable nano-TATB by microfluidics 被引量:4
8
作者 Song Zhang Le-wu Zhan +4 位作者 Guang-kai Zhu Yi-yi Teng Yu Shan Jing Hou Li Bin-dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1139-1147,共9页
Nano-TATB was developed in microchannels by physical method and chemical method,respectively.The effects of total flow rate,number of microreactor plates,solvent/non-solvent ratio and temperature on the particle size ... Nano-TATB was developed in microchannels by physical method and chemical method,respectively.The effects of total flow rate,number of microreactor plates,solvent/non-solvent ratio and temperature on the particle size of TATB in the physical method were studied.Prepared TATB were characterized by Nano Sizer,Scanning Electron Microscopy,Specific surface aperture analyzer,X-ray diffraction,Fourier transform infrared spectroscopy and Differential Scanning Calorimetry.The results show that the TATB obtained by physical method and chemical method are spherical,with average particle size of 130.66 nm and 108.51 nm,respectively.Specific surface areas of TATB obtained by physical and chemical methods are 21.37 m^(2)/g and 21.91 m^(2)/g,respectively.Compared with the specific surface area of micro-TATB(0.0808 m^(2)/g),the specific surface area of nano-TATB is significantly increased.DSC test results show that the smaller the particle size of TATB,the lower the thermal decomposition temperature.In addition,by simulating the mixing state of fluid in microchannels and combining with the classical nucleation theory,the mechanism of preparing nano-TATB by microchannels was proposed. 展开更多
关键词 Nano-TATB microfluidics Energetic materials Solvent/non-solvent method AMINATION Simulation
下载PDF
Progress of Microfluidics for Biology and Medicine 被引量:3
9
作者 Jingdong Chen Di Chen +2 位作者 Yao Xie Tao Yuan Xiang Chen 《Nano-Micro Letters》 SCIE EI CAS 2013年第1期66-80,共15页
Microfluidics has been considered as a potential technology to miniaturize the conventional equipments and technologies. It offers advantages in terms of small volume, low cost, short reaction time and highthroughput.... Microfluidics has been considered as a potential technology to miniaturize the conventional equipments and technologies. It offers advantages in terms of small volume, low cost, short reaction time and highthroughput. The applications in biology and medicine research and related areas are almost the most extensive and profound. With the appropriate scale that matches the scales of cells, microfluidics is well positioned to contribute significantly to cell biology. Cell culture, fusion and apoptosis were successfully performed in microfluidics. Microfluidics provides unique opportunities for rare circulating tumor cells isolation and detection from the blood of patients, which furthers the discovery of cancer stem cell biomarkers and expands the understanding of the biology of metastasis. Nucleic acid amplification in microfluidics has extended to single-molecule, high-throughput and integration treatment in one chip. DNA computer which is based on the computational model of DNA biochemical reaction will come into practice from concept in the future. In addition, microfluidics offers a versatile platform for protein-protein interactions, protein crystallization and high-throughput screening. Although microfluidics is still in its infancy, its great potential has already been demonstrated and will provide novel solutions to the high-throughput applications. 展开更多
关键词 microfluidics LAB-ON-A-CHIP DROPLET HIGH-THROUGHPUT Cell Nucleic acid amplification
下载PDF
Microfluidics-based strategies for molecular diagnostics of infectious diseases 被引量:1
10
作者 Xin Wang Xian-Zhe Hong +4 位作者 Yi-Wei Li Ying Li Jie Wang Peng Chen Bi-Feng Liu 《Military Medical Research》 SCIE CAS CSCD 2022年第6期727-753,共27页
Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing(POCT). Emerging microfluidics, a highly miniaturized, automatic, and int... Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing(POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology,are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses.Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection.This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes,including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis. 展开更多
关键词 microfluidics Molecular diagnostics Infectious disease Point-of-care testing(POCT) Digital assay
下载PDF
Development of a Microfluidics-Based Quantitative Real-Time PCR to Rapidly Identify Photobacterium damselae subsp.damselae with Different Pathogenicity by Detecting the Presence of mcp or dly Gene
11
作者 ZHANG Zheng YU Yongxiang +5 位作者 CHEN Jing WANG Yingeng JIANG Yong LIAO Meijie RONG Xiaojun ZHANG Hao 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第2期445-453,共9页
As a marine bacterial pathogen, Photobacterium damselae subsp. damselae(PDD) is distributed in seawater worldwide. It can infect different animals as well as humans, even cause deaths. The highly conserved regions of ... As a marine bacterial pathogen, Photobacterium damselae subsp. damselae(PDD) is distributed in seawater worldwide. It can infect different animals as well as humans, even cause deaths. The highly conserved regions of PDD mcp gene on chromosome and dly gene on plasmid were selected as the target fragments to design the specific primers. Recombinant plasmid standard was prepared based on the primers. With GENECHECKER UF-150 qRT-PCR instrument as the platform, a fluorescence-based quantitative real-time PCR(qRT-PCR) method was established for the detection of PDD. This method can specifically detect PDD and distinguish the highly virulent strains. Additionally, the test results can be qualitatively judged by visualization, while the quantitative detection can be achieved through the standard curve calculation. The minimum limit of detection was 1.0×101 copies μL-1, and the detection time was less than 20 min. In summary, this new method has outstanding advantages, such as strong specificity, high sensitivity, and low site requirements. It is a rapid on-site detection technology for highly virulent PDD strains. 展开更多
关键词 MARICULTURE Photobacterium damselae microfluidics PATHOGENICITY rapid detection
下载PDF
Elaboration of Materials with Functionality Gradients by Assembly of Chitosan-Collagen Microspheres Produced by Microfluidics
12
作者 David Azria Raluca Guermache +4 位作者 Sophie Raisin Sébastien Blanquer Frédéric Gobeaux Marie Morille Emmanuel Belamie 《Journal of Renewable Materials》 SCIE 2018年第3期314-324,共11页
Biopolymers extracted from renewable resources like chitosan and collagen exhibit interesting properties for the elaboration of materials designed for tissue engineering applications,among which are their hydrophilici... Biopolymers extracted from renewable resources like chitosan and collagen exhibit interesting properties for the elaboration of materials designed for tissue engineering applications,among which are their hydrophilicity,biocompatibility and biodegradability.In many cases,functional recovery of an injured tissue or organ requires oriented cell outgrowth,which is particularly critical for nerve regeneration.Therefore,there is a growing interest for the elaboration of materials exhibiting functionalization gradients able to guide cells.Here,we explore an original way of elaborating such gradients by assembling particles from a library of functionalized microspheres.We propose a simple process to prepare chitosan-collagen hybrid microspheres by micro-and milli-fluidics,with adaptable dimensions and narrow size distributions.The adhesion and survival rate of PC12 cells on hybrid microspheres were compared to those on pure chitosan ones.Finally,functionalized microspheres were assembled into membranes exhibiting a functionalization gradient. 展开更多
关键词 Hybrid MICROSPHERES BIOMATERIALS chitosan collagen FUNCTIONALITY gradient nerve regeneration microfluidics
下载PDF
Surface-tension-confined droplet microfluidics
13
作者 陈新莲 伍罕 巫金波 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期29-42,共14页
This article is a concise overview about the developing microfluidic systems named surface-tension-confined droplet microfluidics (STORMs). Different from traditional complexed droplet microfluidics which generated ... This article is a concise overview about the developing microfluidic systems named surface-tension-confined droplet microfluidics (STORMs). Different from traditional complexed droplet microfluidics which generated and confined the droplets by three-dimensional (3D) poly(dimethylsiloxane)-based microchannels, STORM systems provide two- dimensional (2D) platforms for control of droplets. STORM devices utilize surface energy, with methods such as surface chemical modification and mechanical processing, to control the movement of fluid droplets. Various STORM devices have been readily prepared, with distinct advantages over conventional droplet microfluidics, which generated and confined the droplets by 3D poly(dimethylsiloxane)-based microchannels, such as significant reduction of energy consumption neces- sary for device operation, facile or even direct introduction of droplets onto patterned surface without external driving force such as a micropump, thus increased frequency or efficiency of droplets generation of specific STORM device, among others. Thus, STORM devices can be excellent alternatives for majority areas in droplet microfluidics and irreplaceable choices in certain fields by contrast. In this review, fabrication methods or strategies, manipulation methods or mechanisms, and main applications of STORM devices are introduced. 展开更多
关键词 surface-tension-confined DROPLET microfluidics MICROPATTERNING WETTABILITY
下载PDF
Hierarchically Inverse Opal Porous Scaffolds from Droplet Microfluidics for Biomimetic 3D Cell Co-Culture
14
作者 Changmin Shao Yuxiao Liu +2 位作者 Junjie Chi Fangfu Ye Yuanjin Zhao 《Engineering》 SCIE EI 2021年第12期1778-1785,共8页
With the advantages of better mimicking the specificity of natural tissues,three-dimensional(3D)cell culture plays a major role in drug development,toxicity testing,and tissue engineering.However,existing scaffolds or... With the advantages of better mimicking the specificity of natural tissues,three-dimensional(3D)cell culture plays a major role in drug development,toxicity testing,and tissue engineering.However,existing scaffolds or microcarriers for 3D cell culture are often limited in size and show suboptimal performance in simulating the vascular complexes of living organisms.Therefore,we present a novel hierarchically inverse opal porous scaffold made via a simple microfluidic approach for promoting 3D cell co-culture techniques.The designed scaffold is constructed using a combined concept involving an emulsion droplet template and inert polymer polymerization.This work demonstrates that the resultant scaffolds ensure a sufficient supply of nutrients during cell culture,so as to achieve large-volume cell culture.In addition,by serially planting different cells in the scaffold,a 3D co-culture system of endothelial-cellencapsulated hepatocytes can be developed for constructing certain functional tissues.It is also demonstrated that the use of the proposed scaffold for a co-culture system helps hepatocytes to maintain specific in vivo functions.These hierarchically inverse opal scaffolds lay the foundation for 3D cell culture and even the construction of biomimetic tissues. 展开更多
关键词 microfluidics Inverse opal Cell culture DROPLET Biomaterial
下载PDF
Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics
15
作者 Xuanyu Li Qiang Feng +1 位作者 Ziwei Han Xingyu Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期216-220,共5页
Most non-viral carriers for in vitro delivery of nucleic acids suffer from low efficiency of introducing m RNA and other nucleic acids,especially large m RNA.Cas9 protein is the nuclease part of the powerful gene-edit... Most non-viral carriers for in vitro delivery of nucleic acids suffer from low efficiency of introducing m RNA and other nucleic acids,especially large m RNA.Cas9 protein is the nuclease part of the powerful gene-editing tool,CRISPR/Cas9 system,Cas9 m RNA is particularly large,thus presents a big challenge for delivery.We assembled a multilayered biodegradable nanocarrier to load Cas9 m RNA inside to protect Cas9 m RNA from degradation.We used a microfluidic chip to synthesize a small,positively charged,and degradable core to attract negatively charged Cas9 m RNA.The microfluidic assembly allows the core to be small enough to incorporate into a cationic liposome.The multilayered nanocarriers elevated the delivery efficiency of Cas9 m RNA by over 2 folds and increased the expression by over 5 folds compared to commercially used non-viral carriers.In addition,the multilayered nanocarriers do not require reduced serum medium for transfection.When using the standard complete medium for transfection,the multilayered nanocarriers could increase the expression of Cas9 m RNA by over 15 folds compared to commercially used non-viral carriers.The co-delivery of Cas9 m RNA and sg RNA via LRC elevated the gene-editing efficiency by 3 folds compared to that via commercially used non-viral carriers.Based on the higher transfection efficiency of Cas9 m RNA/sg RNA than commercially used non-viral carriers,these multilayered nanocarriers may have a good prospect as efficient commercial delivery carriers for Cas9 m RNA/sg RNA and other nucleic acids. 展开更多
关键词 NANOTECHNOLOGY Biomedical engineering microfluidics CRISPR/Cas9 system Poly(lactic-co-glycolic acid)
下载PDF
Microfluidics for Medical Additive Manufacturing
16
作者 Jie Wang Changmin Shao +2 位作者 Yuetong Wang Lingyun Sun Yuanjin Zhao 《Engineering》 SCIE EI 2020年第11期1244-1257,共14页
Additive manufacturing plays a vital role in the food,mechanical,pharmaceutical,and medical fields.Within these fields,medical additive manufacturing has led to especially obvious improvements in medical instruments,p... Additive manufacturing plays a vital role in the food,mechanical,pharmaceutical,and medical fields.Within these fields,medical additive manufacturing has led to especially obvious improvements in medical instruments,prostheses,implants,and so forth,based on the advantages of cost-effectiveness,customizability,and quick manufacturing.With the features of precise structural control,high throughput,and good component manipulation,microfluidic techniques present distinctive benefits in medical additive manufacturing and have been applied in the areas of drug discovery,tissue engineering,and organs on chips.Thus,a comprehensive review of microfluidic techniques for medical additive manufacturing is useful for scientists with various backgrounds.Herein,we review recent progress in the development of microfluidic techniques for medical additive manufacturing.We evaluate the distinctive benefits associated with microfluidic technologies for medical additive manufacturing with respect to the fabrication of droplet/fiber templates with different structures.Extensive applications of microfluidic techniques for medical additive manufacturing are emphasized,such as cell guidance,three-dimensional(3D)cell culture,tissue assembly,and cell-based therapy.Finally,we present challenges in and future perspectives on the development of microfluidics for medical additive manufacturing. 展开更多
关键词 microfluidics Biomaterial Additive manufacturing DROPLET FIBER
下载PDF
Microfluidics:Emerging prospects for anti-cancer drug screening
17
作者 Donald Wlodkowic Zbigniew Darzynkiewicz 《World Journal of Clinical Oncology》 CAS 2010年第1期18-23,共6页
Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity.Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modaliti... Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity.Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature.To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy,new analytical screening technologies are needed.The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics,opening new avenues for systems oncology and high-throughput real-time drug screening routines.The up-and-coming microfluidic Lab-on-a-Chip(LOC)technology and micrototal analysis systems(μTAS)are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level.The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample.Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and,as such,they enable next generation high-throughput and high-content screening of anticancer drugs on patient-derived specimens.Herein we highlight the selected advancements in this emerging field of bioengineering,and provide a snapshot of developments with relevance to anti-cancer drug screening routines. 展开更多
关键词 microfluidics LAB-ON-A-CHIP CYTOMETRY CYTOMICS CANCER ANTI-CANCER drugs CANCER therapy Drug screening
下载PDF
Characterizing the Effect of Static Magnetic Fields on <i>C. elegans</i>Using Microfluidics
18
作者 Zach Njus Douglas Feldmann +3 位作者 Riley Brien Taejoon Kong Upender Kalwa Santosh Pandey 《Advances in Bioscience and Biotechnology》 2015年第9期583-591,共9页
In nature, several organisms possess a magnetic compass to navigate or migrate them to desired locations. It is thought that these organisms may use biogenic magnetic matter or light-sensitive photoreceptors to sense ... In nature, several organisms possess a magnetic compass to navigate or migrate them to desired locations. It is thought that these organisms may use biogenic magnetic matter or light-sensitive photoreceptors to sense and orient themselves in magnetic fields. To unravel the underlying principles of magnetosensitivity and magnetoreception, previous experiments have been conducted on bacteria, vertebrates, crustaceans, and insects. In this study, the model organism, C. elegans, is used to test their response and sensitivity to static magnetic fields in the range of 5 milli Tesla to 120 milli Tesla. Single wild-type C. elegans are put in microfluidic channels and exposed to permanent magnets for five cycles of thirty-second time intervals. The worm movement is recorded and analyzed with custom software to calculate the average velocity and the percentage of turning and curling. Contrary to some published studies, our results did not show a significant difference compared to control experiments. This suggests that C. elegans may not sense static magnetic fields in the range of field strengths that we tested. 展开更多
关键词 C. ELEGANS MAGNET Magnetotaxis BEHAVIOR microfluidics
下载PDF
The Development of the Heparin Monitoring System Based on Microfluidics Technology
19
作者 Jingwen Zhou 《Journal of Biomaterials and Nanobiotechnology》 2020年第3期195-213,共19页
Heparin monitoring is widely used to measure the anticoagulant effect of unfractionated heparin and adjust the dose to keep within the target treatment range. This technology has applications in many fields and also p... Heparin monitoring is widely used to measure the anticoagulant effect of unfractionated heparin and adjust the dose to keep within the target treatment range. This technology has applications in many fields and also prospects in the future. Its application has the advantages of rapidity, high throughput and minimum sample consumption. Many point of care devices for heparin monitoring are available. The CoaguChek device only requires a small sample size, which is obtained through a fingerstick. Over the last few years, the point-of-care (POC) testing was used widely for its convenience, efficiency, and faster turnaround times. 展开更多
关键词 Heparin Monitoring Care Devices microfluidics Technology
下载PDF
Advances in tumor-endothelial cells co-culture and interaction on microfluidics 被引量:5
20
作者 Weiwei Li Mashooq Khan +2 位作者 Sifeng Mao Shuo Feng Jin-Ming Lin 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第4期210-218,共9页
The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the sur- rounding and far tissues of the body is the leading cause of mortality in cancer patients, With a lot of advance... The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the sur- rounding and far tissues of the body is the leading cause of mortality in cancer patients, With a lot of advancement in the field, yet the biological cause of metastasis are poorly understood, The microfluidic system provides advanced technology to reconstruct a variety of in vivo-like environment for studying the interactions between tumor ceils (TCs) and endothelial ceils (ECs). This review gives a brief account of both two-dimensional models and three-dimensional microfluidic systems for the analysis of TCs-ECs co- culture as well as their applications to anti-cancer drug screening, Furthermore, the advanced methods for analyzing cell-to-cell interactions at single-cell level were also discussed, 展开更多
关键词 Microfluidic Cell analysis Cell co-culture Cell interaction REVIEW
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部