From the viewpoint of production engineering, microforming is considered as an effective process to fabricate various microparts. Several key problems in microforming processes were investigated. A new microforming ap...From the viewpoint of production engineering, microforming is considered as an effective process to fabricate various microparts. Several key problems in microforming processes were investigated. A new microforming apparatus with a high stiffness piezoelectric actuator as the punch driver was developed to produce microparts.To improve the forming abilities and locate the billets, a floating microdie was designed. The size effects of the billets and die cavities on the microforming abilities were studied with upsetting and coining tests, respectively.And the isothermal microforming process of microgears was performed with the developed microforming apparatus. Several analysis methods were used to evaluate the forming quality of the microparts.展开更多
The mechanical behavior of superplastic 5083 aluminum alloy during microforming process was investigated by finite element analysis.A micro V-groove die was modeled to analyze the effects of forming time,load and temp...The mechanical behavior of superplastic 5083 aluminum alloy during microforming process was investigated by finite element analysis.A micro V-groove die was modeled to analyze the effects of forming time,load and temperature on the microformability of the 5083 aluminum alloy.First,the microformability of the 5083 aluminum alloy was estimated using a microformability index.The simulation results show that the microformability increases with the forming load,time and temperature increasing.Superplasticity of the 5083 aluminum alloy during microforming using the V-groove die was also investigated in terms of the effective strain rate.The results show that the superplasticity of the 5083 aluminum alloy occurs in a specific part of the material for a specific period during the microforming process depending on the forming conditions and the microformability index.展开更多
Research on microforming of fine-grained superplastic Zn-AI22 alloy was carried out in this paper by means of superplastic forming. With the selected material, microformability tests have been carried out with the spe...Research on microforming of fine-grained superplastic Zn-AI22 alloy was carried out in this paper by means of superplastic forming. With the selected material, microformability tests have been carried out with the specially developed evaluation method by using two kinds of stainless steel dies. With these dies, micro-extrusion tests have been carried out and the characteristics of microformability of the material have been clarified. Effects of processing parameters and die structure on forming have been analyzed. SEM and metallographic microscope have been used to analyze the formed specimens. Through analysis of flow lines of the formed specimen, behavior of material could be understood well.展开更多
In this research,a method employing micro-extrusion was designed to produce the micro-scaled barrel-shaped parts with complex geometrical features to study the feasibility of the proposed microforming method and its g...In this research,a method employing micro-extrusion was designed to produce the micro-scaled barrel-shaped parts with complex geometrical features to study the feasibility of the proposed microforming method and its grain size effect on the formability of the complicated internal features in terms of deformation behavior,material evolution,accuracy of dimensions and final components quality.The results reveal that the deformation behavior is highly affected by grain size and becomes unpredictable with increased grain size.In addition,assembly parameters including feature dimension,tolerance and coaxiality also vary with grain size,and the variation of grain size needs to be accommodated by different assembly types,viz.,clearance fit or transition fit.From the microstructural evolution aspect,it was identified there were two dead zones and four shear bands,and the formation of these deformation zones was barely affected by the variation in grain size.Though bulges,cracks,and fracture induced voids were observed on the surface of the final components,tailoring the microstructure of the working material with finer grains could significantly avoid these defects.This study advances the understanding of forming microparts by extrusion processes and provides guidance for microforming of similar microparts.展开更多
As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small ge...As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small geometrical size,there are uncertain process performance and product quality issues in this production process.In this study,the shafted microgears were fabricated in two different scaling factors with four grain sizes using a progressively extrusion-blanking method.To explore the unknown of the process,grain-based modeling was proposed and employed to simulate the entire forming process.The results show that when the grains are large,the anisotropy of single grains has an obvious size effect on the forming behavior and process performance;and the produced geometries and surface quality are worsened;and the deformation load is decreased.Five deformation zones were identified in the microstructures with different hardness and distributions of stress and strain.The simulation by using the proposed model successfully predicted the formation of zones and revealed the inhomogeneous deformation in the forming process.The undesirable geometries of microgears including material unfilling,burr and inclination were observed on the shaft and teeth of gear,and the inclination size is increased obviously with grain size.To avoid the formation of inclination and material unfilling,the punch was redesigned,and a die insert was added to constraint the bottom surface of the gear teeth.The new products had then the better forming quality.展开更多
To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crys...To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crystal plasticity theory, the analysis of the scale effect mechanism on upsetting deformation of micro rods was performed with respect to specimen dimension, original grain orientation and its distribution. The results show that flow stress decreases significantly with the scaling down of the specimen. The distribution of the grain orientation has an evident effect on flow stress of the micro specimen, and the effect becomes smaller with the progress of plastic deformation. For the anisotropy of single grains, inhomogeneous deformation occurs at the surface layer, which leads to the increase of surface roughness, especially for small specimens. The effect of grain anisotropy on the surface topography can be decreased by the transition grains. The simulation results are validated by upsetting deformation experiments. This indicates that the developed model is suitable for the analysis of microforming processes with characteristics, such as scale dependency, scatter of flow stress and inhomogeneous deformation.展开更多
基金The authors gratefully acknowledge the financial support of the National High-Tech Research and Development of China (No. 2004AA404260);the Science Foundation for Distingguished Young Scholars of Heilongjiang Province (No. JC-05-11) ;the Program for New Century Excellent Talents in University (No. NCET-04-0322).
文摘From the viewpoint of production engineering, microforming is considered as an effective process to fabricate various microparts. Several key problems in microforming processes were investigated. A new microforming apparatus with a high stiffness piezoelectric actuator as the punch driver was developed to produce microparts.To improve the forming abilities and locate the billets, a floating microdie was designed. The size effects of the billets and die cavities on the microforming abilities were studied with upsetting and coining tests, respectively.And the isothermal microforming process of microgears was performed with the developed microforming apparatus. Several analysis methods were used to evaluate the forming quality of the microparts.
基金Project supported by Development Program of Local Science Park by the ULSAN Metropolitan City and the MEST(Ministry of Education,Science and Technology)Project supported by Basic Science Research Program,the National Research Foundation of Korea(2011-0026072)
文摘The mechanical behavior of superplastic 5083 aluminum alloy during microforming process was investigated by finite element analysis.A micro V-groove die was modeled to analyze the effects of forming time,load and temperature on the microformability of the 5083 aluminum alloy.First,the microformability of the 5083 aluminum alloy was estimated using a microformability index.The simulation results show that the microformability increases with the forming load,time and temperature increasing.Superplasticity of the 5083 aluminum alloy during microforming using the V-groove die was also investigated in terms of the effective strain rate.The results show that the superplasticity of the 5083 aluminum alloy occurs in a specific part of the material for a specific period during the microforming process depending on the forming conditions and the microformability index.
文摘Research on microforming of fine-grained superplastic Zn-AI22 alloy was carried out in this paper by means of superplastic forming. With the selected material, microformability tests have been carried out with the specially developed evaluation method by using two kinds of stainless steel dies. With these dies, micro-extrusion tests have been carried out and the characteristics of microformability of the material have been clarified. Effects of processing parameters and die structure on forming have been analyzed. SEM and metallographic microscope have been used to analyze the formed specimens. Through analysis of flow lines of the formed specimen, behavior of material could be understood well.
基金funding support to this research from the National Natural Science Foundation of China(Grant No.51835011)the project of ZE1W from The Hong Kong Polytechnic University,and the General Research Fund of Hong Kong Government(Grant No.15223520).
文摘In this research,a method employing micro-extrusion was designed to produce the micro-scaled barrel-shaped parts with complex geometrical features to study the feasibility of the proposed microforming method and its grain size effect on the formability of the complicated internal features in terms of deformation behavior,material evolution,accuracy of dimensions and final components quality.The results reveal that the deformation behavior is highly affected by grain size and becomes unpredictable with increased grain size.In addition,assembly parameters including feature dimension,tolerance and coaxiality also vary with grain size,and the variation of grain size needs to be accommodated by different assembly types,viz.,clearance fit or transition fit.From the microstructural evolution aspect,it was identified there were two dead zones and four shear bands,and the formation of these deformation zones was barely affected by the variation in grain size.Though bulges,cracks,and fracture induced voids were observed on the surface of the final components,tailoring the microstructure of the working material with finer grains could significantly avoid these defects.This study advances the understanding of forming microparts by extrusion processes and provides guidance for microforming of similar microparts.
基金The authors would like to acknowledge the funding support to this research from the projects of ZE1W and BBAT from The Hong Kong Polytechnic University,the National Natural Science Foundation of China(NSFC)(Grant No.51835011)the General Research Fund(GRF)(Grant No.15223520).
文摘As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small geometrical size,there are uncertain process performance and product quality issues in this production process.In this study,the shafted microgears were fabricated in two different scaling factors with four grain sizes using a progressively extrusion-blanking method.To explore the unknown of the process,grain-based modeling was proposed and employed to simulate the entire forming process.The results show that when the grains are large,the anisotropy of single grains has an obvious size effect on the forming behavior and process performance;and the produced geometries and surface quality are worsened;and the deformation load is decreased.Five deformation zones were identified in the microstructures with different hardness and distributions of stress and strain.The simulation by using the proposed model successfully predicted the formation of zones and revealed the inhomogeneous deformation in the forming process.The undesirable geometries of microgears including material unfilling,burr and inclination were observed on the shaft and teeth of gear,and the inclination size is increased obviously with grain size.To avoid the formation of inclination and material unfilling,the punch was redesigned,and a die insert was added to constraint the bottom surface of the gear teeth.The new products had then the better forming quality.
基金Project (50835002) supported by the National Natural Science Foundation of ChinaProject (QC08C55) supported by the Natural Science Foundation of Heilongjiang Province, China Project (200802131031) supported by the PhD. Programs Foundation of Ministry of Education of China for Young Scholars
文摘To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crystal plasticity theory, the analysis of the scale effect mechanism on upsetting deformation of micro rods was performed with respect to specimen dimension, original grain orientation and its distribution. The results show that flow stress decreases significantly with the scaling down of the specimen. The distribution of the grain orientation has an evident effect on flow stress of the micro specimen, and the effect becomes smaller with the progress of plastic deformation. For the anisotropy of single grains, inhomogeneous deformation occurs at the surface layer, which leads to the increase of surface roughness, especially for small specimens. The effect of grain anisotropy on the surface topography can be decreased by the transition grains. The simulation results are validated by upsetting deformation experiments. This indicates that the developed model is suitable for the analysis of microforming processes with characteristics, such as scale dependency, scatter of flow stress and inhomogeneous deformation.