This paper presents in the first place, the state of art relating to the methods to solve optimal power flows (OPF) and its application in electrical microgrids. Afterwards, a mathematical algorithm based on the gradi...This paper presents in the first place, the state of art relating to the methods to solve optimal power flows (OPF) and its application in electrical microgrids. Afterwards, a mathematical algorithm based on the gradient method is proposed for the application of OPF in a low power microgrid, in order to improve the voltages profiles and consequently reduce the active power losses. Finally, the proposed algorithm is implemented in a low power microgrid to demonstrate the effectiveness of the method.展开更多
Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution i...Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly unbalance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.展开更多
This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian Uni...This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.展开更多
Microgrids are revolutionary power systems that interconnect a mix of renewable power generation, load, storage systems, and inverters in a small-scale grid network. Operating microgrids while maintaining a consistent...Microgrids are revolutionary power systems that interconnect a mix of renewable power generation, load, storage systems, and inverters in a small-scale grid network. Operating microgrids while maintaining a consistent grid voltage and frequency during the islanding and disruption of renewables has been a challenging research problem. In this paper, a preliminary microgrid agent implementation is presented using SPADE (Smart Python Agent Development Environment) as a powerful development framework that has been used extensively in many application domains. Agents autonomously managed and operated microgrid individual components. A multiagent microgrid system was modeled to seamlessly operate and optimize energy balance by coordinating the actions of agents. Agents were built to forecast energy demand and solar power and coordinate to balance generation with load while maintaining optimal power flow and adequate network voltage and frequency.展开更多
在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网...在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网中BPCs控制的研究难点。因此,该文设计了一种针对BPCs的事件触发改进一致性协调控制策略。以归一化下垂控制为基础,提出了改进的比例功率一致性算法,实现BPCs间高精度比例功率共享。在此之上,基于BPCs比例功率误差建立事件触发改进一致性算法,并预设触发函数的预判阈值,从而降低系统在稳定状态下的通信次数。最后进行仿真对比分析,结果表明该文提出的方法相比基本一致性算法通信量减少98.35%;同时,与现有控制策略相比,该文提出的方法有着更好的控制性能。展开更多
The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil th...The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.展开更多
为了解决偏远地区电力供应不足的问题,笔者提出一种含风力发电、光伏发电及蓄电池储能的离网型风光储微电网系统。风力发电最大功率点跟踪(maximum power point tracking,MPPT)采用叶尖速比法的控制策略,光伏发电MPPT采用变步长扰动观...为了解决偏远地区电力供应不足的问题,笔者提出一种含风力发电、光伏发电及蓄电池储能的离网型风光储微电网系统。风力发电最大功率点跟踪(maximum power point tracking,MPPT)采用叶尖速比法的控制策略,光伏发电MPPT采用变步长扰动观察法的控制策略,蓄电池储能系统采用基于双闭环控制的充放电控制策略。结合广西地区实际风速及光照强度变化情况,利用MATLAB/Simulink平台对所提出的风光储微电网系统进行了建模及仿真,验证了所提系统的可靠性和控制策略的有效性。展开更多
文摘This paper presents in the first place, the state of art relating to the methods to solve optimal power flows (OPF) and its application in electrical microgrids. Afterwards, a mathematical algorithm based on the gradient method is proposed for the application of OPF in a low power microgrid, in order to improve the voltages profiles and consequently reduce the active power losses. Finally, the proposed algorithm is implemented in a low power microgrid to demonstrate the effectiveness of the method.
文摘Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly unbalance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.
文摘This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.
文摘Microgrids are revolutionary power systems that interconnect a mix of renewable power generation, load, storage systems, and inverters in a small-scale grid network. Operating microgrids while maintaining a consistent grid voltage and frequency during the islanding and disruption of renewables has been a challenging research problem. In this paper, a preliminary microgrid agent implementation is presented using SPADE (Smart Python Agent Development Environment) as a powerful development framework that has been used extensively in many application domains. Agents autonomously managed and operated microgrid individual components. A multiagent microgrid system was modeled to seamlessly operate and optimize energy balance by coordinating the actions of agents. Agents were built to forecast energy demand and solar power and coordinate to balance generation with load while maintaining optimal power flow and adequate network voltage and frequency.
文摘在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网中BPCs控制的研究难点。因此,该文设计了一种针对BPCs的事件触发改进一致性协调控制策略。以归一化下垂控制为基础,提出了改进的比例功率一致性算法,实现BPCs间高精度比例功率共享。在此之上,基于BPCs比例功率误差建立事件触发改进一致性算法,并预设触发函数的预判阈值,从而降低系统在稳定状态下的通信次数。最后进行仿真对比分析,结果表明该文提出的方法相比基本一致性算法通信量减少98.35%;同时,与现有控制策略相比,该文提出的方法有着更好的控制性能。
文摘The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.
文摘为了解决偏远地区电力供应不足的问题,笔者提出一种含风力发电、光伏发电及蓄电池储能的离网型风光储微电网系统。风力发电最大功率点跟踪(maximum power point tracking,MPPT)采用叶尖速比法的控制策略,光伏发电MPPT采用变步长扰动观察法的控制策略,蓄电池储能系统采用基于双闭环控制的充放电控制策略。结合广西地区实际风速及光照强度变化情况,利用MATLAB/Simulink平台对所提出的风光储微电网系统进行了建模及仿真,验证了所提系统的可靠性和控制策略的有效性。