Composite materials exhibit advantages from the combination of multiple properties,which cannot be achieved by a monolithic material.At present,the use of composite materials in miniaturized scale is receiving much at...Composite materials exhibit advantages from the combination of multiple properties,which cannot be achieved by a monolithic material.At present,the use of composite materials in miniaturized scale is receiving much attention in the fields of medicine,electronics,aerospace,and microtooling.A common method for producing miniaturized composite parts is micromanufacturing.There has been,however,no comprehensive literature published that reviews,compares,and discusses the ongoing micromanufacturing methods for producing miniaturized composite components.This study identifies the major micromanufacturing methods used with composite materials,categorizes their subclasses,and highlights the latest developments,new trends,and effects of key factors on the productivity,quality,and cost of manufacturing composite materials.A comparative study is presented that shows the potential and versatility associated with producing composite materials along with possible future applications.This review will be helpful in promoting micromanufacturing technology for fabricating miniaturized products made of composite materials to meet the growing industrial demand.展开更多
The Hypersonic Precooled Combined Cycle Engine(HPCCE), which introduces precooler into traditional hypersonic engine, is regarded as the most promising propulsion system for realizing a single-stage-to-orbit vehicle. ...The Hypersonic Precooled Combined Cycle Engine(HPCCE), which introduces precooler into traditional hypersonic engine, is regarded as the most promising propulsion system for realizing a single-stage-to-orbit vehicle. The unique demands lead to the application of the compact heat exchangers, which can realize high thrust-to-weight ratio, sufficient specific impulse and high compression ratio. However, it is challenging to accurately manufacture the compact heat exchanger due to its extremely high heat dissipation capacity, remarkable compactness, superior adaptability and harsh operating condition. This review summarizes the precooling schemes of combined cycle propulsions and describes the demands and key issues in the fabrication of a compact heat exchanger for HPCCE. The investigation focuses on the application of various micromanufacturing methods of heat exchangers constructed from tubes of less than 1 mm in diameter and microchannels of less than 200 micrometers. Various micromanufacturing processes, which include microforming, micromachining, stereolithography, chemical etching, 3 D printing, joining and other advanced microfabricating processes, were reviewed. In addition, the technologies are compared in terms of dimensional tolerance, material compatibility, and process applicability. Furthermore, the boundaries of the micromanufacturing constraints are specified as references for the design of compact heat exchangers. Ultimately, the technological difficulties and development trends are discussed for the fabrication of compact heat exchangers for HPCCE.展开更多
基金The authors would like to thank the Australian Research Council(ARC)for its financial support for the current study.We also acknowledge the use of facilities within the UOW Electron Microscopy Centre.
文摘Composite materials exhibit advantages from the combination of multiple properties,which cannot be achieved by a monolithic material.At present,the use of composite materials in miniaturized scale is receiving much attention in the fields of medicine,electronics,aerospace,and microtooling.A common method for producing miniaturized composite parts is micromanufacturing.There has been,however,no comprehensive literature published that reviews,compares,and discusses the ongoing micromanufacturing methods for producing miniaturized composite components.This study identifies the major micromanufacturing methods used with composite materials,categorizes their subclasses,and highlights the latest developments,new trends,and effects of key factors on the productivity,quality,and cost of manufacturing composite materials.A comparative study is presented that shows the potential and versatility associated with producing composite materials along with possible future applications.This review will be helpful in promoting micromanufacturing technology for fabricating miniaturized products made of composite materials to meet the growing industrial demand.
基金the funding support to this research from the National Natural Science Foundation of China (Nos. 51635005, 51975031 and 51605018)Defense Industrial Technology Development Program of China (No.JCKY2018601C207)。
文摘The Hypersonic Precooled Combined Cycle Engine(HPCCE), which introduces precooler into traditional hypersonic engine, is regarded as the most promising propulsion system for realizing a single-stage-to-orbit vehicle. The unique demands lead to the application of the compact heat exchangers, which can realize high thrust-to-weight ratio, sufficient specific impulse and high compression ratio. However, it is challenging to accurately manufacture the compact heat exchanger due to its extremely high heat dissipation capacity, remarkable compactness, superior adaptability and harsh operating condition. This review summarizes the precooling schemes of combined cycle propulsions and describes the demands and key issues in the fabrication of a compact heat exchanger for HPCCE. The investigation focuses on the application of various micromanufacturing methods of heat exchangers constructed from tubes of less than 1 mm in diameter and microchannels of less than 200 micrometers. Various micromanufacturing processes, which include microforming, micromachining, stereolithography, chemical etching, 3 D printing, joining and other advanced microfabricating processes, were reviewed. In addition, the technologies are compared in terms of dimensional tolerance, material compatibility, and process applicability. Furthermore, the boundaries of the micromanufacturing constraints are specified as references for the design of compact heat exchangers. Ultimately, the technological difficulties and development trends are discussed for the fabrication of compact heat exchangers for HPCCE.