The constitutive behavior of microcrystals remains mysterious since very little,or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability.Furthermore,t...The constitutive behavior of microcrystals remains mysterious since very little,or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability.Furthermore,the measured stress-strain curves vary greatly under different control modes,while constitutive behavior should remain unaffected by test methods.Beyond these reasons,probing the real constitutive behavior of microcrystals has long been a challenge because the nonlinear dynamical behaviors of micromechanical testing systems are unclear.Here,we perform and carefully analyze the experiments on singlecrystal aluminum micropillars under displacement control and load control.To interpret these experimental results,a lumpedparameter physical model based on the principle of micromechanical testing is developed,which can directly relate nonlinear dynamics of the micromechanical testing system to the constitutive behavior of microcrystals.This reveals that some stages of the measured stress-strain curve attributed to the control algorithm are not related to constitutive behavior.By solving the nonlinear dynamics of the micromechanical testing system,intense plastic instability(large strain burst)starting from the equilibrium state is attributed to the strain-softening stage of microcrystals.Parametric studies are also performed to reduce the influence of plastic instability on the measured responses.This study provides critical insights for developing various constitutive models and designing a reliable micromechanical testing system.展开更多
Fe_(72.4)Co_(13.9)Cr_(10.4)Mn_(2.7)B_(0.34)high entropy steel was prepared by magnetron sputtering.The alloy exhibits a high yield strength of 2.92±0.36 GPa while achieving appreciable plasticity of 13.7±1.9...Fe_(72.4)Co_(13.9)Cr_(10.4)Mn_(2.7)B_(0.34)high entropy steel was prepared by magnetron sputtering.The alloy exhibits a high yield strength of 2.92±0.36 GPa while achieving appreciable plasticity of 13.7±1.9%at the ultimate compressive strength(3.37±0.36 GPa).The distribution of iron and chromium shows an un-usual,characteristic spinodal-like pattern at the nanometer scale,where compositions of Fe and Cr show strong anticorrelation and vary by as much as 20 at.%.The high strength is largely attributable to the compositional modulations,combined with fine grains with body-centered cubic(BCC)crystal structure,as well as grain boundary segregation of interstitial boron.The impressive plasticity is accommodated by the formation and operation of multiplanar,multicharacter dislocation slips,mediated by coherent in-terfaces,and controlled by shear bandings.The excellent strength-ductility combination is thus enabled by a range of distinctive strengthening mechanisms,rendering the new alloy a potential candidate for safety-critical,load-bearing structural applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51731009,12102216,and 11972205)the Fundamental Research Funds for the Central Universities(Grant No.2020XZZX005-02)the China Postdoctoral Science Foundation(Grant Nos.2021M691796,and 2021T140379).
文摘The constitutive behavior of microcrystals remains mysterious since very little,or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability.Furthermore,the measured stress-strain curves vary greatly under different control modes,while constitutive behavior should remain unaffected by test methods.Beyond these reasons,probing the real constitutive behavior of microcrystals has long been a challenge because the nonlinear dynamical behaviors of micromechanical testing systems are unclear.Here,we perform and carefully analyze the experiments on singlecrystal aluminum micropillars under displacement control and load control.To interpret these experimental results,a lumpedparameter physical model based on the principle of micromechanical testing is developed,which can directly relate nonlinear dynamics of the micromechanical testing system to the constitutive behavior of microcrystals.This reveals that some stages of the measured stress-strain curve attributed to the control algorithm are not related to constitutive behavior.By solving the nonlinear dynamics of the micromechanical testing system,intense plastic instability(large strain burst)starting from the equilibrium state is attributed to the strain-softening stage of microcrystals.Parametric studies are also performed to reduce the influence of plastic instability on the measured responses.This study provides critical insights for developing various constitutive models and designing a reliable micromechanical testing system.
基金supported by an Australian Research Council Discovery Project(Grant No.DP160104632)an Aus-tralian Government Research Training Program Scholarship.Y.J.Chen acknowledges the support provided by the Australian Re-search Council(Grant No.DE210101773).
文摘Fe_(72.4)Co_(13.9)Cr_(10.4)Mn_(2.7)B_(0.34)high entropy steel was prepared by magnetron sputtering.The alloy exhibits a high yield strength of 2.92±0.36 GPa while achieving appreciable plasticity of 13.7±1.9%at the ultimate compressive strength(3.37±0.36 GPa).The distribution of iron and chromium shows an un-usual,characteristic spinodal-like pattern at the nanometer scale,where compositions of Fe and Cr show strong anticorrelation and vary by as much as 20 at.%.The high strength is largely attributable to the compositional modulations,combined with fine grains with body-centered cubic(BCC)crystal structure,as well as grain boundary segregation of interstitial boron.The impressive plasticity is accommodated by the formation and operation of multiplanar,multicharacter dislocation slips,mediated by coherent in-terfaces,and controlled by shear bandings.The excellent strength-ductility combination is thus enabled by a range of distinctive strengthening mechanisms,rendering the new alloy a potential candidate for safety-critical,load-bearing structural applications.