A methodology for studying soil polygenesis and lithological homogeneity of soil profiles is suggested. This methodology is particularly important for mountain soils, where the lithological heterogeneity of the soil p...A methodology for studying soil polygenesis and lithological homogeneity of soil profiles is suggested. This methodology is particularly important for mountain soils, where the lithological heterogeneity of the soil profiles created by denudation and accumulation processes is often observed. The methodology includes several stages: (a) the study of the lithological homogeneity/ heterogeneity of soil profiles by field and laboratory methods, (b) the stage-by-stage macro-, meso-, micro-, and submicromorphological analyses of soil profiles with additional use of the methods of neighboring sciences, and (e) the subdivision of soil features into the groups of recent and inherited (relict) features. In the latter group, the subgroups of lithorelict features inherited from the parent material and pedorelict features inherited from the previous stages of soil formation can be distinguished. Two major models of soil polygenesis are suggested. Simple models describe the soils, in which new features appear due to the changes in the environmental conditions in the course of soil evolution. Complex models describe the soils, in which such changes are combined with deposition of new portions of sediments onto the soil surface with the development of buried soil horizons (the synlithogenie pedogenesis). The models of continuous and discontinuous synlithogenic pedogenesis can be further distinguished. It is argued that the micromorphological method applied to the studies on soil mierofabrics, microforms of soil humus, soil porosity, coatings, and various pedo- and lithorelict features yields valuable information on polygenetic soils.展开更多
In the present research, micromorphological features of 10 Salvia L. nutlets (mericarp) growing in NE Iran were studied by SEM. These species were divided into three and four groups based on the shape and ornamentatio...In the present research, micromorphological features of 10 Salvia L. nutlets (mericarp) growing in NE Iran were studied by SEM. These species were divided into three and four groups based on the shape and ornamentation of nutlets respectively. The variation in color, size and ornamentation of mericarp helped to identify species.展开更多
The objective of this research was to assess the effect of skidding machinery on soil physical and micromorphological properties. The different positions (control or non-traffic areas, left wheel track, right wheel tr...The objective of this research was to assess the effect of skidding machinery on soil physical and micromorphological properties. The different positions (control or non-traffic areas, left wheel track, right wheel track and log track) and two soil depths (0 - 10 and 10 - 20 cm) in three repetitions were investigated. The results showed that average soil dry bulk density in four positions and two soil depths were significantly different. Comparison of average total porosity percentage and soil saturated hydraulic conductivity revealed that there were significant differences in four positions and two soil depths. Soil thin section studies using Image Tool software showed that in compacted samples there was an increase in the number of vughs voids and channels voids were in low occurrence. Micromorphological studies showed that soil compaction caused void size to decrease. In compacted samples voids bigger than 10 μm were very rare and dominant voids size was 2 μm. In compacted samples soil structure were damaged and aggregates were compressed. Also soil matrix was compressed and microstructure was massive. Results from this study confirmed that skidding machinery had a significant effect on soil physical and morphological properties. These changes causes soil and environmental degradation due to reduction in water infiltration increasing soil erosion risk.展开更多
In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, so...In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, soil micromorphological methods and techniques were used to study the erosion zonal distribution in the region. The results indicated: (1) According to erosion process, the spacial distribution zones of the erosions and landslides in the purple hilly region with different solums were divided into scouring erosion zone, transport-diffusion zone, rocks and soil turbulence zone and sediment-bury zone; (2) The soil micromorphologic taxonomic feature identifying different erosion-landslide zone were found by studying the soil micromorphology of erosive zone in purple hilly region; (3) As for the erosion–landslide formation in the region, besides the external factors, the internal factors were found more important and favorable for landslide formation through the studies on the micormorphological features of slide soil.展开更多
The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here d...The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner. This method has strong mathematical properties with respect to orthogonality and rotating invariance. It was used here to characterize and reconstruct particle micromorphology in three-dimensional space. The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area. The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases, and the error can be brought below 5% when the order number reaches 10. This level of precision is sharp enough to distinguish the characteristics of real particles. Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples, and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D. Results show that the higher the spherical harmonic order of reconstructed particles, the lower the initial compression modulus and the larger the strain at peak intensity. However, peak strength shows only a random relationship to spherical harmonic order. Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.展开更多
The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil ...The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil Taxonomy. The following findings were explored: (1) Stagnic Anthrosols had the specific micromorphological features, e.g., the humic formation in anthrostagnic epipedon, the platy structures in plow subhorizon, the secondary formation of ferromanganese and the weakly optical-orientation clay domains in hydragric horizon, etc.: (2) The groundmasses of ferric horizon in Ustic Ferrosols appeared in hue of 2.5YR or redder, and had pellicular grain structure; (3) Ustic Vertosols had a crust horizon (Acr), and crack structure dominated in Acr and angular blocky structure in disturbed horizon; (4) Because of the distinct differences in micromorphological features among these three soils, the specific micromorphological features might be employed as diagnostic horizons to differentiate soils while the quantifiable micromorphological features might potentially be selected as diagnostic indices for Chinese soil taxonomic classification.展开更多
Using the data obtained from the LGT soil profile, this article attempts to illustrate the process of modem soil formation in the Guanzhong areas and its micromorphological features. The micromorphology is observed un...Using the data obtained from the LGT soil profile, this article attempts to illustrate the process of modem soil formation in the Guanzhong areas and its micromorphological features. The micromorphology is observed under a petrographic microscope, and its image is quantitatively measured by LEICAL Qwin 2.6 software. Micromorphological observations of the thin sections show that the assemblage of minerals in different horizons is very similar, which is mainly composed of Q and P1. However, there are obvious differences in C/F15μm ratio, mineral content, and coarse features. The pedofeatures is mainly composed of clay, calcite, and amorphous Fe. Ap horizon is characterized by abundant needleshaped secondary calcite, secondary clay, and earthworm fecal pellet. BC horizon is characterized by a large quantity of secondary calcite with various shapes. Bt1and Bt2 horizons are characterized by abundant clay hypocoatings and a small quantity of secondary calcite. All the results of this research suggest that Earth-cumulic Orthic Anthrosols consist of both the upper Ap horizon, which cause loessal dung and eolian dust deposition, and cultivation occurs simultaneously during the process of Ap horizon-formation, and the lower BC horizon, which is aeolian sedimentary at the time of relative aridity during late Holocene.展开更多
The archaeological site of the Sanxingdui may date back as far as 5,000 years ago. The typical profiles of Palaeo-Stagnic-Anthrosols near the ancient site were selected, which aimed to identify diagnostic horizons emp...The archaeological site of the Sanxingdui may date back as far as 5,000 years ago. The typical profiles of Palaeo-Stagnic-Anthrosols near the ancient site were selected, which aimed to identify diagnostic horizons employing methodology of soil taxonomic classification and to reveal the micromorphological properties of the paleosols. Under long-term anthropogenic mellowing, the discernible differentiation between anthrostagnic epipedon and its subhorizons as well as hydragric horizon and its subhorizons occurred in Paleo-Stagnie-Anthrosols at the archaeological site of the Sanxingdui. The mieromorphological properties diversified among each specific diagnostic subhorizon, e.g., the developed microstructure in cultivated subhorizon within anthrostagnic epipedon, closely arranged particles and considerable micropores beneficial to both of water conservation and filtration in plow subhorizon within anthrostagnic epipedon, and automorphic optical-orientation clays and calcareous corrosion in hydragric horizons. The findings above of micromorphological features related with diagnostic horizons are significant for soil taxonomic classification.展开更多
The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of...The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.展开更多
By comparing micromorphological features of irrigated and non-irrigated soils in Guanzhong areas, China, this paper tries to illustrate the influences of farming management methods on the soil-forming process. The mic...By comparing micromorphological features of irrigated and non-irrigated soils in Guanzhong areas, China, this paper tries to illustrate the influences of farming management methods on the soil-forming process. The micromorphology was observed under a petrographic microscope and its image was quantificationally measured by Nikon NISBR 2.2 software. Both irrigated and non-irrigated soils have the same soil profile pattern, Ap1- AP2- BC, but the former has a more obvious profile dissimilation. The minerals assemblage of soil profiles A and B are very similar, which is mainly composed of Q and P1. Compared with non-irrigated soil, grains of irrigated soil remarkably decrease in length, area, eqdiameter, perimeter, elongation, roundness, and C/F10μm ratio; voids are characterized by more regular void shape and more smooth void wall; there is more abundant residual clay and small amount of illuvial clay. All results in this study suggest that the farming management method has influences on soil profile dissimilation and micromorphology. Agricultural irrigation could strengthen the degree of weathering, make smaller and rounder soil grains, cause a significant increase of residual clay and appearance of illuvial clay. But no significant change has been observed in the minerals assemblage of coarse grains.展开更多
[Objectives]To discuss the relationship between left epidermis structures and drought resistance.[Methods]The leaf epidermis of Callisia repens was studied by optical microscope.[Results]The upper and lower epidermal ...[Objectives]To discuss the relationship between left epidermis structures and drought resistance.[Methods]The leaf epidermis of Callisia repens was studied by optical microscope.[Results]The upper and lower epidermal cells of the leaves of Callisia repens arranged closely,and no cell gap was arranged.The morphology of the epidermal cells was hexagonal,few pentagon or heptagon,the equivalent elliptical aspect ratio was 1.20,the vertical wall was straight and there was no stomatal distribution.Compared with the epidermal cells,the morphology of the lower epidermal cells was irregular.The equivalent elliptic aspect ratio was 1.35,and the vertical wall was smooth and curved.The mean oval aspect ratio of the stomatal guard cells was 1.42,the average stomatal density was 11.79/mm 2,and the average stomatal index was 17.21.[Conclusions]These characteristics provide the theoretical basis for the drought resistance of Callisia repens and the ornamental plants as roof greening.展开更多
To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-t...To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.展开更多
Composts are considered to be one of the best soil amendments. However, the effects of composts with added polymeric materials on soil physical,hydraulic, and micromorphological properties have not been widely discuss...Composts are considered to be one of the best soil amendments. However, the effects of composts with added polymeric materials on soil physical,hydraulic, and micromorphological properties have not been widely discussed. Changes in soil physical properties influence the numerous services that soils provide. We studied the impacts of composts with the addition of three different polymers(F1–F3) produced from polyethylene and thermoplastic corn starch on the physical, hydraulic, and micromorphological properties of two soils, a Cambic Phaeozem and a Luvic Phaeozem. Applying composts with polymers had limited or no significant effect on soil bulk density and porosity, but increased the field water capacity by 18%–82% and 3%–6% and the plant-available water content by 15%–23% and 4%–17% for the Cambic Phaeozem and Luvic Phaeozem, respectively. The application of composts with polymers had a greater effect on the Cambic Phaeozem than on the Luvic Phaeozem. It was suggested that the use of modified composts led to changes in soil physical properties and micromorphological features and this effect was dependent on the compost application rate. Composts made with the addition of composite synthetic and natural material-derived polymers during composting were found to be a composite mixture that can be successfully used in agriculture.展开更多
Past builders have developed very low-embodied energy construction techniques optimizing the use of local building materials.These techniques are a source of inspiration for modern sustainable building.Unfortunately,t...Past builders have developed very low-embodied energy construction techniques optimizing the use of local building materials.These techniques are a source of inspiration for modern sustainable building.Unfortunately,this know-how was orally transmitted and was lost as earth construction fell into disuse during the 20th century in European countries.The absence of written documents makes necessary to use an archaeological approach in order to rediscover these construction strategies.Micromorphological analysis of thin sections collacted in earth building walls was used for the first time to describe cob construction technique and highlighted several typical pedofeatures allowing to clearly identifying this process.Finally,a first comparison of the cob and rammed earth micromorphological features permitted to identify two key factors to distinguish these two techniques,the manufacturing state(solid or plastic)and the organization of the material in the wall.展开更多
Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanop...Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties.展开更多
The morphology of antennal sensilla of both nymphs and adults in the cicada Meimuna mongolica (Distant) were studied. Four instars of M. mongolica (Distant) were preliminarily determined using Dyar's rule and a r...The morphology of antennal sensilla of both nymphs and adults in the cicada Meimuna mongolica (Distant) were studied. Four instars of M. mongolica (Distant) were preliminarily determined using Dyar's rule and a regression analysis of the head width of nymphs, combined with the comparative morphology of antennae of different stage nymphs and adults. The antennae of nymphs in different instars and adults show great morphological variations. The numbers, types and distribution of antennal sensilla in nymphs and adults of M. mongolica are significantly different, which should be closely related to the niche changes of the nymphs and adults, and provide implications for the development stages of this cicada.展开更多
Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO T...Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.展开更多
Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of...Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g^-1 to 3.74 dL·g^-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fluid behavior.展开更多
A kind of pseudo-hypercrosslinked polymer resin was firstly synthesized via a continuous Friedel-Crafts alkylation poly- merization of benzene, diphenyl and their dichloromethyl derivatives. And the micromorphology an...A kind of pseudo-hypercrosslinked polymer resin was firstly synthesized via a continuous Friedel-Crafts alkylation poly- merization of benzene, diphenyl and their dichloromethyl derivatives. And the micromorphology and adsorption properties of these resins were investigated. The results demonstrated that the novel resins have high-specific surface area (581.26-974.88 m^2/g), high- pore volume (0.56-1.65 mL/g), small average porous radius (1.93-3.67 nm) and excellent adsorption properties for small non-polar organic molecules.展开更多
This work aimed to help the bamboo industry develop methodology for producing imperfection-free bamboo boards that can serve either decorative or structural benefit to consumers seeking to engage with the bioeconomy.S...This work aimed to help the bamboo industry develop methodology for producing imperfection-free bamboo boards that can serve either decorative or structural benefit to consumers seeking to engage with the bioeconomy.Specifically,softened and slotted bamboo tubes were handled by a roller device with nails to render crack-free flattened bamboo board.Softening temperature and time were optimized herein according to findings regarding chemical composition and board mechanical properties.The optimal softening parameters for saturated steam heat treatment is proved to be 160°C for 8 min.The flattened bamboo board possesses an increased bending strength of 101.5 MPa and a decreased bending modulus of 7.7 GPa,being compared with only-softened bamboo.The corresponding changing mechanism is determined in-depth by the micro-morphological and mechanical results based on in-situ SEM and AFM technologies.Under the action of nails and rolling processes,the bamboo texture becomes compact with crushed and fragmented conduit walls.The resulting cell cavity then becomes stretched and compressed,taking on a morphology which allows for the mechanical penalties associated with flattening to be avoided.According to the micro-mechanical results obtained by AFM,compared with unflatten bamboo,the Young’s modulus of the cell membrane in transverse direction(YT)decreases to 1.00 GPa while the corresponding Young’s modulus in radial direction(YR)increases to 7.29 GPa.展开更多
文摘A methodology for studying soil polygenesis and lithological homogeneity of soil profiles is suggested. This methodology is particularly important for mountain soils, where the lithological heterogeneity of the soil profiles created by denudation and accumulation processes is often observed. The methodology includes several stages: (a) the study of the lithological homogeneity/ heterogeneity of soil profiles by field and laboratory methods, (b) the stage-by-stage macro-, meso-, micro-, and submicromorphological analyses of soil profiles with additional use of the methods of neighboring sciences, and (e) the subdivision of soil features into the groups of recent and inherited (relict) features. In the latter group, the subgroups of lithorelict features inherited from the parent material and pedorelict features inherited from the previous stages of soil formation can be distinguished. Two major models of soil polygenesis are suggested. Simple models describe the soils, in which new features appear due to the changes in the environmental conditions in the course of soil evolution. Complex models describe the soils, in which such changes are combined with deposition of new portions of sediments onto the soil surface with the development of buried soil horizons (the synlithogenie pedogenesis). The models of continuous and discontinuous synlithogenic pedogenesis can be further distinguished. It is argued that the micromorphological method applied to the studies on soil mierofabrics, microforms of soil humus, soil porosity, coatings, and various pedo- and lithorelict features yields valuable information on polygenetic soils.
文摘In the present research, micromorphological features of 10 Salvia L. nutlets (mericarp) growing in NE Iran were studied by SEM. These species were divided into three and four groups based on the shape and ornamentation of nutlets respectively. The variation in color, size and ornamentation of mericarp helped to identify species.
文摘The objective of this research was to assess the effect of skidding machinery on soil physical and micromorphological properties. The different positions (control or non-traffic areas, left wheel track, right wheel track and log track) and two soil depths (0 - 10 and 10 - 20 cm) in three repetitions were investigated. The results showed that average soil dry bulk density in four positions and two soil depths were significantly different. Comparison of average total porosity percentage and soil saturated hydraulic conductivity revealed that there were significant differences in four positions and two soil depths. Soil thin section studies using Image Tool software showed that in compacted samples there was an increase in the number of vughs voids and channels voids were in low occurrence. Micromorphological studies showed that soil compaction caused void size to decrease. In compacted samples voids bigger than 10 μm were very rare and dominant voids size was 2 μm. In compacted samples soil structure were damaged and aggregates were compressed. Also soil matrix was compressed and microstructure was massive. Results from this study confirmed that skidding machinery had a significant effect on soil physical and morphological properties. These changes causes soil and environmental degradation due to reduction in water infiltration increasing soil erosion risk.
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX3-SW-330)the State Natural Science Foundation for Outstanding Personnel of China(40025103)
文摘In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, soil micromorphological methods and techniques were used to study the erosion zonal distribution in the region. The results indicated: (1) According to erosion process, the spacial distribution zones of the erosions and landslides in the purple hilly region with different solums were divided into scouring erosion zone, transport-diffusion zone, rocks and soil turbulence zone and sediment-bury zone; (2) The soil micromorphologic taxonomic feature identifying different erosion-landslide zone were found by studying the soil micromorphology of erosive zone in purple hilly region; (3) As for the erosion–landslide formation in the region, besides the external factors, the internal factors were found more important and favorable for landslide formation through the studies on the micormorphological features of slide soil.
基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProjects(51679071,51309089)supported by the National Natural Science Foundation of China+2 种基金Project(BK20130846)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2013BAB06B00)supported by the National Key Technology R&D Program,ChinaProject(2015B06014)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner. This method has strong mathematical properties with respect to orthogonality and rotating invariance. It was used here to characterize and reconstruct particle micromorphology in three-dimensional space. The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area. The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases, and the error can be brought below 5% when the order number reaches 10. This level of precision is sharp enough to distinguish the characteristics of real particles. Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples, and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D. Results show that the higher the spherical harmonic order of reconstructed particles, the lower the initial compression modulus and the larger the strain at peak intensity. However, peak strength shows only a random relationship to spherical harmonic order. Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-409)
文摘The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil Taxonomy. The following findings were explored: (1) Stagnic Anthrosols had the specific micromorphological features, e.g., the humic formation in anthrostagnic epipedon, the platy structures in plow subhorizon, the secondary formation of ferromanganese and the weakly optical-orientation clay domains in hydragric horizon, etc.: (2) The groundmasses of ferric horizon in Ustic Ferrosols appeared in hue of 2.5YR or redder, and had pellicular grain structure; (3) Ustic Vertosols had a crust horizon (Acr), and crack structure dominated in Acr and angular blocky structure in disturbed horizon; (4) Because of the distinct differences in micromorphological features among these three soils, the specific micromorphological features might be employed as diagnostic horizons to differentiate soils while the quantifiable micromorphological features might potentially be selected as diagnostic indices for Chinese soil taxonomic classification.
文摘Using the data obtained from the LGT soil profile, this article attempts to illustrate the process of modem soil formation in the Guanzhong areas and its micromorphological features. The micromorphology is observed under a petrographic microscope, and its image is quantitatively measured by LEICAL Qwin 2.6 software. Micromorphological observations of the thin sections show that the assemblage of minerals in different horizons is very similar, which is mainly composed of Q and P1. However, there are obvious differences in C/F15μm ratio, mineral content, and coarse features. The pedofeatures is mainly composed of clay, calcite, and amorphous Fe. Ap horizon is characterized by abundant needleshaped secondary calcite, secondary clay, and earthworm fecal pellet. BC horizon is characterized by a large quantity of secondary calcite with various shapes. Bt1and Bt2 horizons are characterized by abundant clay hypocoatings and a small quantity of secondary calcite. All the results of this research suggest that Earth-cumulic Orthic Anthrosols consist of both the upper Ap horizon, which cause loessal dung and eolian dust deposition, and cultivation occurs simultaneously during the process of Ap horizon-formation, and the lower BC horizon, which is aeolian sedimentary at the time of relative aridity during late Holocene.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KZCX2-YW-409)
文摘The archaeological site of the Sanxingdui may date back as far as 5,000 years ago. The typical profiles of Palaeo-Stagnic-Anthrosols near the ancient site were selected, which aimed to identify diagnostic horizons employing methodology of soil taxonomic classification and to reveal the micromorphological properties of the paleosols. Under long-term anthropogenic mellowing, the discernible differentiation between anthrostagnic epipedon and its subhorizons as well as hydragric horizon and its subhorizons occurred in Paleo-Stagnie-Anthrosols at the archaeological site of the Sanxingdui. The mieromorphological properties diversified among each specific diagnostic subhorizon, e.g., the developed microstructure in cultivated subhorizon within anthrostagnic epipedon, closely arranged particles and considerable micropores beneficial to both of water conservation and filtration in plow subhorizon within anthrostagnic epipedon, and automorphic optical-orientation clays and calcareous corrosion in hydragric horizons. The findings above of micromorphological features related with diagnostic horizons are significant for soil taxonomic classification.
文摘The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.
基金This research was financially supported by the National Natural Science Foundation of China (40471119, 40571154) Project of State Key Laboratory of Loess and Quaternary Geology of China (SKLLQG0604) Natural Science Foundation of Shaanxi Province (2006D01).
文摘By comparing micromorphological features of irrigated and non-irrigated soils in Guanzhong areas, China, this paper tries to illustrate the influences of farming management methods on the soil-forming process. The micromorphology was observed under a petrographic microscope and its image was quantificationally measured by Nikon NISBR 2.2 software. Both irrigated and non-irrigated soils have the same soil profile pattern, Ap1- AP2- BC, but the former has a more obvious profile dissimilation. The minerals assemblage of soil profiles A and B are very similar, which is mainly composed of Q and P1. Compared with non-irrigated soil, grains of irrigated soil remarkably decrease in length, area, eqdiameter, perimeter, elongation, roundness, and C/F10μm ratio; voids are characterized by more regular void shape and more smooth void wall; there is more abundant residual clay and small amount of illuvial clay. All results in this study suggest that the farming management method has influences on soil profile dissimilation and micromorphology. Agricultural irrigation could strengthen the degree of weathering, make smaller and rounder soil grains, cause a significant increase of residual clay and appearance of illuvial clay. But no significant change has been observed in the minerals assemblage of coarse grains.
基金Supported by Special Funds for Competitive Allocation Project of Guangdong Provincial Science and Technology Innovation Strategy(2018A03030)Special Talent Program of Lingnan Normal University(ZL2021010).
文摘[Objectives]To discuss the relationship between left epidermis structures and drought resistance.[Methods]The leaf epidermis of Callisia repens was studied by optical microscope.[Results]The upper and lower epidermal cells of the leaves of Callisia repens arranged closely,and no cell gap was arranged.The morphology of the epidermal cells was hexagonal,few pentagon or heptagon,the equivalent elliptical aspect ratio was 1.20,the vertical wall was straight and there was no stomatal distribution.Compared with the epidermal cells,the morphology of the lower epidermal cells was irregular.The equivalent elliptic aspect ratio was 1.35,and the vertical wall was smooth and curved.The mean oval aspect ratio of the stomatal guard cells was 1.42,the average stomatal density was 11.79/mm 2,and the average stomatal index was 17.21.[Conclusions]These characteristics provide the theoretical basis for the drought resistance of Callisia repens and the ornamental plants as roof greening.
基金supported by the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Grant No.2011DA105287-zd201804)Jiangxi Provincial Natural Science Foundation of China(Grant No.20232BAB214036).
文摘To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.
基金financed by the Ministry of Science and Higher Education of the Republic of Polandwithin the framework of the project “Utilization of Biomass for the Preparation of Environmentally Friendly Polymer Materials” (BIOMASA) (No.POIG 01.01.02-10123/09),partially financed by the European Union within the European Regional Development Fund。
文摘Composts are considered to be one of the best soil amendments. However, the effects of composts with added polymeric materials on soil physical,hydraulic, and micromorphological properties have not been widely discussed. Changes in soil physical properties influence the numerous services that soils provide. We studied the impacts of composts with the addition of three different polymers(F1–F3) produced from polyethylene and thermoplastic corn starch on the physical, hydraulic, and micromorphological properties of two soils, a Cambic Phaeozem and a Luvic Phaeozem. Applying composts with polymers had limited or no significant effect on soil bulk density and porosity, but increased the field water capacity by 18%–82% and 3%–6% and the plant-available water content by 15%–23% and 4%–17% for the Cambic Phaeozem and Luvic Phaeozem, respectively. The application of composts with polymers had a greater effect on the Cambic Phaeozem than on the Luvic Phaeozem. It was suggested that the use of modified composts led to changes in soil physical properties and micromorphological features and this effect was dependent on the compost application rate. Composts made with the addition of composite synthetic and natural material-derived polymers during composting were found to be a composite mixture that can be successfully used in agriculture.
基金The authors want to acknowledge Dr.Ashish Shukla of Coventry University for his kind proofreading of the manuscript.
文摘Past builders have developed very low-embodied energy construction techniques optimizing the use of local building materials.These techniques are a source of inspiration for modern sustainable building.Unfortunately,this know-how was orally transmitted and was lost as earth construction fell into disuse during the 20th century in European countries.The absence of written documents makes necessary to use an archaeological approach in order to rediscover these construction strategies.Micromorphological analysis of thin sections collacted in earth building walls was used for the first time to describe cob construction technique and highlighted several typical pedofeatures allowing to clearly identifying this process.Finally,a first comparison of the cob and rammed earth micromorphological features permitted to identify two key factors to distinguish these two techniques,the manufacturing state(solid or plastic)and the organization of the material in the wall.
基金Supported by National Natural Science Foundation of China(Grant Nos.51806112,51975305)PhD Research Startup Foundation of Qingdao University of Technology,China(Grant Nos.JC2022-012,20312008).
文摘Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties.
基金supported by the National Natural Science Foundation of China (31093430)the Program for New Century Excellent Talents in Universities of China (NCET-10-0691)
文摘The morphology of antennal sensilla of both nymphs and adults in the cicada Meimuna mongolica (Distant) were studied. Four instars of M. mongolica (Distant) were preliminarily determined using Dyar's rule and a regression analysis of the head width of nymphs, combined with the comparative morphology of antennae of different stage nymphs and adults. The antennae of nymphs in different instars and adults show great morphological variations. The numbers, types and distribution of antennal sensilla in nymphs and adults of M. mongolica are significantly different, which should be closely related to the niche changes of the nymphs and adults, and provide implications for the development stages of this cicada.
基金supported by the CAS West-Developing Initiative (Grant No. KZCX2-XB2-07)the Key Technologies R & D Program of China (Grant No. 2008BAD98B04)
文摘Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.
文摘Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g^-1 to 3.74 dL·g^-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fluid behavior.
基金the financial support of the National Natural Science Foundation of China (No. 20574063).
文摘A kind of pseudo-hypercrosslinked polymer resin was firstly synthesized via a continuous Friedel-Crafts alkylation poly- merization of benzene, diphenyl and their dichloromethyl derivatives. And the micromorphology and adsorption properties of these resins were investigated. The results demonstrated that the novel resins have high-specific surface area (581.26-974.88 m^2/g), high- pore volume (0.56-1.65 mL/g), small average porous radius (1.93-3.67 nm) and excellent adsorption properties for small non-polar organic molecules.
基金This research was funded by Financial support from the National Natural Science Foundation of China(Nos.61601227,31971740)China Postdoctoral Science Foundation(2017M621598)+4 种基金Nature Science Foundation of Jiangsu Province(BK20160939)Key University Science Research Project of Jiangsu Province(17KJA220004)Jiangsu Agricultural Science and Technology Independent Innovation Project(CX(18)3033)Science and Technology Program of Fujian Province(2019N3014)Open Fund of Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo&Rattan Science and Technology(ICBR-2020-08).
文摘This work aimed to help the bamboo industry develop methodology for producing imperfection-free bamboo boards that can serve either decorative or structural benefit to consumers seeking to engage with the bioeconomy.Specifically,softened and slotted bamboo tubes were handled by a roller device with nails to render crack-free flattened bamboo board.Softening temperature and time were optimized herein according to findings regarding chemical composition and board mechanical properties.The optimal softening parameters for saturated steam heat treatment is proved to be 160°C for 8 min.The flattened bamboo board possesses an increased bending strength of 101.5 MPa and a decreased bending modulus of 7.7 GPa,being compared with only-softened bamboo.The corresponding changing mechanism is determined in-depth by the micro-morphological and mechanical results based on in-situ SEM and AFM technologies.Under the action of nails and rolling processes,the bamboo texture becomes compact with crushed and fragmented conduit walls.The resulting cell cavity then becomes stretched and compressed,taking on a morphology which allows for the mechanical penalties associated with flattening to be avoided.According to the micro-mechanical results obtained by AFM,compared with unflatten bamboo,the Young’s modulus of the cell membrane in transverse direction(YT)decreases to 1.00 GPa while the corresponding Young’s modulus in radial direction(YR)increases to 7.29 GPa.