In this work,silver nanoparticles were successfully.The particles were characterized by Transmission electron microscope,UV-visible spectroscopy,particle size analyzer.The results show that particles were about 35nm,a...In this work,silver nanoparticles were successfully.The particles were characterized by Transmission electron microscope,UV-visible spectroscopy,particle size analyzer.The results show that particles were about 35nm,and ratio between PVP and AgNO3was the key factors of the synthesis process,which can affect the size and shape of silver nanoparticles.The work implied that the method can also be suitable to fabricate other metal nanostructures.展开更多
Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and ...Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.展开更多
The excited localized surface plasmon(LSP)in metallic nanoparticles is known to relax through several processes such as electron-electron scattering,electron-phonon coupling,and phonon-phonon scat-tering.In the curren...The excited localized surface plasmon(LSP)in metallic nanoparticles is known to relax through several processes such as electron-electron scattering,electron-phonon coupling,and phonon-phonon scat-tering.In the current research,the ultrafast electron-phonon(e-ph)coupling relaxation processes for different average sizes and crystallinity of chemically synthesized silver nanoparticles were evaluated utilizing transient absorption spectroscopy.The nanoparticle size and crystallinity of similar linear dimension polycrystalline spherical and monocrystalline cubic nanoparticles ranging from ca.30-60 nm was related to their electron relaxation time constants and revealed very different dependencies.For the monocrystalline nanocubes,the electron-phonon coupling was not dependent on the cube edge length,while for the polycrystalline nanospheres,it was linearly decreasing with diameter.We demonstrate that the e-ph coupling time constant could be used to evaluate crystallinity and crystallite size in plasmonic metal nanoparticles when the size(surface area)of the nanoparticle is known.展开更多
We present how the luminescence of europium RR-2-P-oxides complexes can be increased by interaction of electronic levels of the complex with the radiation field of silver nanoparticles (NPs). The procedure by which ...We present how the luminescence of europium RR-2-P-oxides complexes can be increased by interaction of electronic levels of the complex with the radiation field of silver nanoparticles (NPs). The procedure by which silver NPs are formed in a sol-gel polyurethane matrix precursor was elaborated. The formed Ag NPs were combined with Eu complex incorporated in ormocer matrix. The emission spectra of the complexes without silver NPs were compared with spectra of the same complexes with addition of silver NPs. As the result of the interaction of the electronic levels of lanthaaide ligands with silver plasmons, dramatic increase of luminescence was observed.展开更多
Silver nanoparticles were synthesized in reverse micelles consisting of sucrose fatty acid esters by dissolving reactant powder in the water pool of reverse micelles through the solid-liquid extraction. Silver nanopar...Silver nanoparticles were synthesized in reverse micelles consisting of sucrose fatty acid esters by dissolving reactant powder in the water pool of reverse micelles through the solid-liquid extraction. Silver nanoparticles having various sizes and shapes were obtained at high concentration. The size of silver nanoparticles was controlled by reaction temperature. Moreover, the size of silver nanoparticles was dependent upon the average esterification degree of sucrose fatty acid esters forming reverse micelles. The wavelength in the peaks, which corresponded upon the localized surface plasmon resonance of resultant silver nanoparticles, was correlated with their sizes.展开更多
A silver removal process was carried out on a Pb-Ag alloy through zinc powder injection of three different sizes (3.55, 44.4 and 734.8μm) with a top submerged lance using nitrogen as carrying gas. The higher silver...A silver removal process was carried out on a Pb-Ag alloy through zinc powder injection of three different sizes (3.55, 44.4 and 734.8μm) with a top submerged lance using nitrogen as carrying gas. The higher silver removal was obtained for the zinc powder size of 44.4μm, while the lowest silver removal efficiency was attained for the smaller particle size. The AgZn phase was detected in the slag for the 44.4 and 734.8μm particle sizes by XRD, which was in agreement with SEM-EDS analysis. Experimental behavior was explained according to the melting and residence time of the injected particles.展开更多
Co3O4 powder has a wide range of applications in the fields of catalysts, magnetic materials and electrochemistry. Especially after the 1990s, the demand for lithium ion battery industry has grown tremendously. The tr...Co3O4 powder has a wide range of applications in the fields of catalysts, magnetic materials and electrochemistry. Especially after the 1990s, the demand for lithium ion battery industry has grown tremendously. The traditional wet preparation of Co3O4 powder cannot meet the requirements of the battery industry. Exploring suitable methods and theories for controlling particle size and morphology is of great significance for the preparation of battery-grade Co3O4 powder. CoCl2 was used as the cobalt source, NH4HCO3 was used as the precipitant, and the precursor was prepared and further calcined to obtain Co3O4 powder. The results show that the molar ratio is the main factor affecting the precursor phase in the preparation of Co3O4 in CoCl2-NH4HCO3 system. The suitable process conditions for the system are a molar ratio of NH4HCO3 to CoCl2 of 4.5:1, a concentration of CoCl2 of 13 g/L, a reaction temperature of 600C, and a reaction time of 10 hours. The median diameter of Co3O4 prepared by the reaction conditions is about 9 μm.展开更多
Silver nanoparticles(Ag NPs)have attracted enormous attention since they open up exciting applications in the fields of waveguides,chemical/biological sensors,molecular rulers and surface enhanced Raman scattering(SER...Silver nanoparticles(Ag NPs)have attracted enormous attention since they open up exciting applications in the fields of waveguides,chemical/biological sensors,molecular rulers and surface enhanced Raman scattering(SERS).All of these applications are based on localized surface plasmon resonance(LSPR).Previous extensive studies have shown that LSPR is highly sensitive to the nanoparticle composition,size,shape,and dielectric environment[1].Hence,the LSPR resonance wavelength is highly tunable over a wide range by changing only the size and shape of the nanoparticle.In another word,the surface plasmon spectroscopy of metal NPs can in turn examine the changes of its morphology.Here,we tuned the morphology of Ag NPs by oxygen plasma pretreatment of polymer substrates.Then the Ag NPs were prepared with physical sputtering deposition.In addition,we present a study to demonstrate that the oxidation of Ag NPs is monitored in real-time by using surface plasmon spectroscopy[2].展开更多
This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method. Ultraviolet visible spectroscopy (UV-V...This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method. Ultraviolet visible spectroscopy (UV-Vis) determines the presence of nanoparticles in the solution. Infrared spectroscopy (IR) proves organic molecules at the particles interface. Powder X-ray diffraction (PXRD) provides phase composition and crystallinity. Shape was showed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) demonstrated the elemental mapping of the silver nanoparticles. Hydrogen peroxide scavenging and phosphomolybdenum antioxidant assays, egg albumin denaturation anti-inflammation study, and the formation mechanism complete the study. The particles have been found composed of pure silver Ag and silver chloride AgCl nanocrystallites. The average crystallite sizes were found to be 13 nm and 20 nm for Ag and AgCl respectively. A Rietveld refinement based XRD pattern data followed by Williamson-Hall plot allows a size and strain analysis. Based on SEM, spherical agglomerates materials were formed and EDX proved the presence of Cl- ions. The reaction formation mechanism of Ag and AgCl is proposed to be simultaneous and competitive. The silver nanoparticles moderately inhibit the denaturation of egg albumin and exhibit antioxidant action;hence, the nanoparticles could be considered as a potential source for biomedical applications.展开更多
Magnesium hydroxide is an important chemi- cal, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtr...Magnesium hydroxide is an important chemi- cal, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtration and drying processes. In this paper, micron-sized magnesium hydroxide with high purity, large particle size and low water content in filter cake was synthesized via simple wet precipitation in a mixed suspension mixed product removal (MSMPR) crystallizer. The effects of reactant concentration, residence time and impurities on the properties of magnesium hydroxide were investigated by X-Ray diffraction (XRD), Scanning Electron Micro- scopy (SEM) and Malvem laser particle size analyzer. The results show that NaOH concentration and residence time have great effects on the water content and particle size of Mg(OH)2. The spherical Mg(OH)2 with uniform diameter of about 30 μm was obtained with purity higher than 99% and water content less than 31%. Furthermore, the crystallization kinetics based on the population balance theory was studied to provide the theoretical data for industrial enlargement, and the simulation coefficients (R2) based on ASL model and C-R model are 0.9962 and 0.9972, respectively, indicating that the crystal growth rate of magnesium hydroxide can be well simulated by the size- dependent growth models.展开更多
基金Program of Qingdao Science&Technology(12-1-4-2-(5)-jch)Natural Scientific Foundation of China(Grant#51273096)Natural Scientific Foundation of China(Grant#51373081)
文摘In this work,silver nanoparticles were successfully.The particles were characterized by Transmission electron microscope,UV-visible spectroscopy,particle size analyzer.The results show that particles were about 35nm,and ratio between PVP and AgNO3was the key factors of the synthesis process,which can affect the size and shape of silver nanoparticles.The work implied that the method can also be suitable to fabricate other metal nanostructures.
基金Project (50771042) supported by the National Natural Science Foundation of ChinaProjects (1041005100052009HASTIT023) supported by the Program for Science and Technology Innovation Talents of Henan Province,China
文摘Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.
基金NET 2 scheme(European Union’s Horizon 2020 Research and Innovation Program,grant No.685451)co-funded by the Research Council of Lithuania(LMTLT),agreement No.S-M-ERA.NET-21-2,the National Science Centre of Poland,project No.2020/02/Y/ST5/00086+1 种基金the Saxon State Ministry for Science,Culture and Tourism(Germany),grant No.100577922as well as from the tax funds on the basis of the budget passed by the Saxon state parliament.
文摘The excited localized surface plasmon(LSP)in metallic nanoparticles is known to relax through several processes such as electron-electron scattering,electron-phonon coupling,and phonon-phonon scat-tering.In the current research,the ultrafast electron-phonon(e-ph)coupling relaxation processes for different average sizes and crystallinity of chemically synthesized silver nanoparticles were evaluated utilizing transient absorption spectroscopy.The nanoparticle size and crystallinity of similar linear dimension polycrystalline spherical and monocrystalline cubic nanoparticles ranging from ca.30-60 nm was related to their electron relaxation time constants and revealed very different dependencies.For the monocrystalline nanocubes,the electron-phonon coupling was not dependent on the cube edge length,while for the polycrystalline nanospheres,it was linearly decreasing with diameter.We demonstrate that the e-ph coupling time constant could be used to evaluate crystallinity and crystallite size in plasmonic metal nanoparticles when the size(surface area)of the nanoparticle is known.
基金supported by the Institute of Physical Chemistry of the Polish Academy of Sciences
文摘We present how the luminescence of europium RR-2-P-oxides complexes can be increased by interaction of electronic levels of the complex with the radiation field of silver nanoparticles (NPs). The procedure by which silver NPs are formed in a sol-gel polyurethane matrix precursor was elaborated. The formed Ag NPs were combined with Eu complex incorporated in ormocer matrix. The emission spectra of the complexes without silver NPs were compared with spectra of the same complexes with addition of silver NPs. As the result of the interaction of the electronic levels of lanthaaide ligands with silver plasmons, dramatic increase of luminescence was observed.
文摘Silver nanoparticles were synthesized in reverse micelles consisting of sucrose fatty acid esters by dissolving reactant powder in the water pool of reverse micelles through the solid-liquid extraction. Silver nanoparticles having various sizes and shapes were obtained at high concentration. The size of silver nanoparticles was controlled by reaction temperature. Moreover, the size of silver nanoparticles was dependent upon the average esterification degree of sucrose fatty acid esters forming reverse micelles. The wavelength in the peaks, which corresponded upon the localized surface plasmon resonance of resultant silver nanoparticles, was correlated with their sizes.
文摘A silver removal process was carried out on a Pb-Ag alloy through zinc powder injection of three different sizes (3.55, 44.4 and 734.8μm) with a top submerged lance using nitrogen as carrying gas. The higher silver removal was obtained for the zinc powder size of 44.4μm, while the lowest silver removal efficiency was attained for the smaller particle size. The AgZn phase was detected in the slag for the 44.4 and 734.8μm particle sizes by XRD, which was in agreement with SEM-EDS analysis. Experimental behavior was explained according to the melting and residence time of the injected particles.
文摘Co3O4 powder has a wide range of applications in the fields of catalysts, magnetic materials and electrochemistry. Especially after the 1990s, the demand for lithium ion battery industry has grown tremendously. The traditional wet preparation of Co3O4 powder cannot meet the requirements of the battery industry. Exploring suitable methods and theories for controlling particle size and morphology is of great significance for the preparation of battery-grade Co3O4 powder. CoCl2 was used as the cobalt source, NH4HCO3 was used as the precipitant, and the precursor was prepared and further calcined to obtain Co3O4 powder. The results show that the molar ratio is the main factor affecting the precursor phase in the preparation of Co3O4 in CoCl2-NH4HCO3 system. The suitable process conditions for the system are a molar ratio of NH4HCO3 to CoCl2 of 4.5:1, a concentration of CoCl2 of 13 g/L, a reaction temperature of 600C, and a reaction time of 10 hours. The median diameter of Co3O4 prepared by the reaction conditions is about 9 μm.
文摘Silver nanoparticles(Ag NPs)have attracted enormous attention since they open up exciting applications in the fields of waveguides,chemical/biological sensors,molecular rulers and surface enhanced Raman scattering(SERS).All of these applications are based on localized surface plasmon resonance(LSPR).Previous extensive studies have shown that LSPR is highly sensitive to the nanoparticle composition,size,shape,and dielectric environment[1].Hence,the LSPR resonance wavelength is highly tunable over a wide range by changing only the size and shape of the nanoparticle.In another word,the surface plasmon spectroscopy of metal NPs can in turn examine the changes of its morphology.Here,we tuned the morphology of Ag NPs by oxygen plasma pretreatment of polymer substrates.Then the Ag NPs were prepared with physical sputtering deposition.In addition,we present a study to demonstrate that the oxidation of Ag NPs is monitored in real-time by using surface plasmon spectroscopy[2].
基金the German Academic Exchange Service DAAD for a generous Professor Fellowship(grant No.768048).
文摘This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method. Ultraviolet visible spectroscopy (UV-Vis) determines the presence of nanoparticles in the solution. Infrared spectroscopy (IR) proves organic molecules at the particles interface. Powder X-ray diffraction (PXRD) provides phase composition and crystallinity. Shape was showed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) demonstrated the elemental mapping of the silver nanoparticles. Hydrogen peroxide scavenging and phosphomolybdenum antioxidant assays, egg albumin denaturation anti-inflammation study, and the formation mechanism complete the study. The particles have been found composed of pure silver Ag and silver chloride AgCl nanocrystallites. The average crystallite sizes were found to be 13 nm and 20 nm for Ag and AgCl respectively. A Rietveld refinement based XRD pattern data followed by Williamson-Hall plot allows a size and strain analysis. Based on SEM, spherical agglomerates materials were formed and EDX proved the presence of Cl- ions. The reaction formation mechanism of Ag and AgCl is proposed to be simultaneous and competitive. The silver nanoparticles moderately inhibit the denaturation of egg albumin and exhibit antioxidant action;hence, the nanoparticles could be considered as a potential source for biomedical applications.
文摘Magnesium hydroxide is an important chemi- cal, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtration and drying processes. In this paper, micron-sized magnesium hydroxide with high purity, large particle size and low water content in filter cake was synthesized via simple wet precipitation in a mixed suspension mixed product removal (MSMPR) crystallizer. The effects of reactant concentration, residence time and impurities on the properties of magnesium hydroxide were investigated by X-Ray diffraction (XRD), Scanning Electron Micro- scopy (SEM) and Malvem laser particle size analyzer. The results show that NaOH concentration and residence time have great effects on the water content and particle size of Mg(OH)2. The spherical Mg(OH)2 with uniform diameter of about 30 μm was obtained with purity higher than 99% and water content less than 31%. Furthermore, the crystallization kinetics based on the population balance theory was studied to provide the theoretical data for industrial enlargement, and the simulation coefficients (R2) based on ASL model and C-R model are 0.9962 and 0.9972, respectively, indicating that the crystal growth rate of magnesium hydroxide can be well simulated by the size- dependent growth models.