Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many ...Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
This paper summarizes the pollution, situation and solutions of chrome bearing materials used in high temperature industry. Hexavalent chromium compounds are readily soluble in water and associated with carcinogen. Th...This paper summarizes the pollution, situation and solutions of chrome bearing materials used in high temperature industry. Hexavalent chromium compounds are readily soluble in water and associated with carcinogen. Therefore, serious environmental problems appeal for the study and application of chrome free materials. Chrome free products include: magnesia based materials, dolomite based materials, magnesia spinel materials, magnesia hercynite or magnesia galaxite materials and zirconia containing materials,and other substitutes. Although any product has its advantages and disadvantages, the trend to development of chrome free products is inevitable.展开更多
Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However...Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However, the atmospheric environment in key areas such as Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and Fenwei Plain is still severe, and especially during the heating period heavy pollution occurs frequently, which has become the focus and difficulty of improving the quality of the atmospheric environment and is also the weakest link of China s air pollution control at present. How to alleviate air pollution, how to win the battle of pollution prevention and control, how to hold the fruits of the blue sky defense war, energy consumption is key.展开更多
A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local o...A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.展开更多
A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for...A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for solving the K-equation, using the truncated Gram-Charlier expansion (type A) of the concentration field and finite set equations for the corresponding moments. The other model (named ADMM: Analytical Dispersion Multilayers Model) is an semi- analytical solution to the time-dependent two-dimensional advection-diffusion equation based on a discretization of the PBL in N sub-layers;in each sub-layers the advection-diffusion equation is solved by the Laplace transform technique, considering an average value for eddy diffusivity and the wind speed. A preliminary performance evaluation is shown in the case of continuous emission from an elevated source in a variable boundary layer. Both models were able to correctly reproduce the concentration field measured and so to be used as operative air pollution models.展开更多
Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex....Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mn, or Zn concentrations. Most of the A1 in solution was bound to organic matter. Within the fraction "labile aluminium', the concentration of A1-OH complexes decreased and the A1-F complexes increased, especially A1F3 and A1F4^-, which are less toxic than Al^3+ and A1-OH species.展开更多
Heavy metals—Pb and Cr are important causes of environmental pollution, and they often coexist in nature. At present, the effects of Pb and Cr toxicity on soil microorganisms have been less studied, in soil environme...Heavy metals—Pb and Cr are important causes of environmental pollution, and they often coexist in nature. At present, the effects of Pb and Cr toxicity on soil microorganisms have been less studied, in soil environment which is extremely complex. Simulating soil environment and studying microbial reaction under various heavy metal conditions are of great significance for revealing microbial tolerance to heavy metals. In this paper, firstly, the related concepts of soil rechecking pollution are discussed, and the physical and chemical properties and forms of lead and chromium are introduced accordingly. Secondly, the effects of combined pollution of lead and chromium on soil microbial biomass, soil microbial community structure and soil microbial activity were discussed. Finally, the relevant treatment methods of heavy metal contaminated soil were put forward.展开更多
Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordi...Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.展开更多
Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-fri...Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.展开更多
Wet purification technology for nonferrous metal smelting flue gas is important for mercury removal;however, this technology produces a large amounts of spent scrubbing solution that contain mercury. The mercury in th...Wet purification technology for nonferrous metal smelting flue gas is important for mercury removal;however, this technology produces a large amounts of spent scrubbing solution that contain mercury. The mercury in these scrubbing solutions pose a great threat to the environment. Therefore, this research provides a novel strategy for removing and recycling mercury from the scrubbing solution, which is significant for decreasing mercury pollution while also allowing for the safe disposal of wastewater and a stable supply of mercury resources. Some critical parameters for the electrochemical reduction of mercury were studied in detail. Additionally, the electrodeposition dynamics and electroreduction mechanism for mercury were evaluated. Results suggested that over 92.4% of mercury could be removed from the scrubbing solution in the form of a Hg-Cu alloy under optimal conditions within 150 min and with a current efficiency of approximately 75%. Additionally, mercury electrodeposition was a quasi-reversible process, and the controlled step was the mass transport of the reactant. A pre-conversion step from Hg(Tu)_(4)^(2+) to Hg(Tu)_(3)^(2+) before mercury electroreduction was necessary. Then, the formed Hg(Tu)_(3)^(2+) on the cathode surface gained electrons step by step. After electrodeposition, the mercury in the spent cathode could be recycled by thermal desorption. The results of the electrochemical reduction of mercury and subsequent recycling provides a practical and easy-to-adopt alternative for recycling mercury resources and decreasing mercury contamination.展开更多
文摘Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
文摘This paper summarizes the pollution, situation and solutions of chrome bearing materials used in high temperature industry. Hexavalent chromium compounds are readily soluble in water and associated with carcinogen. Therefore, serious environmental problems appeal for the study and application of chrome free materials. Chrome free products include: magnesia based materials, dolomite based materials, magnesia spinel materials, magnesia hercynite or magnesia galaxite materials and zirconia containing materials,and other substitutes. Although any product has its advantages and disadvantages, the trend to development of chrome free products is inevitable.
基金Supported by Special Project for Research on Prevention and Control of Air Pollution from Fire Coal in 2018 of Ministry of Ecology and Environment of the People’s Republic of China(2018A030)National Natural Science Foundation of China(41771498)
文摘Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However, the atmospheric environment in key areas such as Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and Fenwei Plain is still severe, and especially during the heating period heavy pollution occurs frequently, which has become the focus and difficulty of improving the quality of the atmospheric environment and is also the weakest link of China s air pollution control at present. How to alleviate air pollution, how to win the battle of pollution prevention and control, how to hold the fruits of the blue sky defense war, energy consumption is key.
文摘A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.
文摘A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for solving the K-equation, using the truncated Gram-Charlier expansion (type A) of the concentration field and finite set equations for the corresponding moments. The other model (named ADMM: Analytical Dispersion Multilayers Model) is an semi- analytical solution to the time-dependent two-dimensional advection-diffusion equation based on a discretization of the PBL in N sub-layers;in each sub-layers the advection-diffusion equation is solved by the Laplace transform technique, considering an average value for eddy diffusivity and the wind speed. A preliminary performance evaluation is shown in the case of continuous emission from an elevated source in a variable boundary layer. Both models were able to correctly reproduce the concentration field measured and so to be used as operative air pollution models.
基金supported by the National Programme for Research and Development, Spanish Ministry of Science (No.AMB97-1062).
文摘Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mn, or Zn concentrations. Most of the A1 in solution was bound to organic matter. Within the fraction "labile aluminium', the concentration of A1-OH complexes decreased and the A1-F complexes increased, especially A1F3 and A1F4^-, which are less toxic than Al^3+ and A1-OH species.
文摘Heavy metals—Pb and Cr are important causes of environmental pollution, and they often coexist in nature. At present, the effects of Pb and Cr toxicity on soil microorganisms have been less studied, in soil environment which is extremely complex. Simulating soil environment and studying microbial reaction under various heavy metal conditions are of great significance for revealing microbial tolerance to heavy metals. In this paper, firstly, the related concepts of soil rechecking pollution are discussed, and the physical and chemical properties and forms of lead and chromium are introduced accordingly. Secondly, the effects of combined pollution of lead and chromium on soil microbial biomass, soil microbial community structure and soil microbial activity were discussed. Finally, the relevant treatment methods of heavy metal contaminated soil were put forward.
基金supported by the National Natural Science Foundation of China(Grant Nos.22050410268,22176131)Shenzhen Basic Research General Project(JCYJ20210324095205015,JCYJ20220818095601002)。
文摘Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.
文摘Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.
基金supported by the Natural Science Foundation of China(No.51804139)the China Postdoctoral Science Foundation(No.2019M652275)the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology(No.2019003)。
文摘Wet purification technology for nonferrous metal smelting flue gas is important for mercury removal;however, this technology produces a large amounts of spent scrubbing solution that contain mercury. The mercury in these scrubbing solutions pose a great threat to the environment. Therefore, this research provides a novel strategy for removing and recycling mercury from the scrubbing solution, which is significant for decreasing mercury pollution while also allowing for the safe disposal of wastewater and a stable supply of mercury resources. Some critical parameters for the electrochemical reduction of mercury were studied in detail. Additionally, the electrodeposition dynamics and electroreduction mechanism for mercury were evaluated. Results suggested that over 92.4% of mercury could be removed from the scrubbing solution in the form of a Hg-Cu alloy under optimal conditions within 150 min and with a current efficiency of approximately 75%. Additionally, mercury electrodeposition was a quasi-reversible process, and the controlled step was the mass transport of the reactant. A pre-conversion step from Hg(Tu)_(4)^(2+) to Hg(Tu)_(3)^(2+) before mercury electroreduction was necessary. Then, the formed Hg(Tu)_(3)^(2+) on the cathode surface gained electrons step by step. After electrodeposition, the mercury in the spent cathode could be recycled by thermal desorption. The results of the electrochemical reduction of mercury and subsequent recycling provides a practical and easy-to-adopt alternative for recycling mercury resources and decreasing mercury contamination.