In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitori...In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer.展开更多
Microphysical properties of sea fog and correlations of these properties were analyzed based on the measurements from a comprehensive field campaign carried out from 15 March to 18 April 2010 on Donghai Island (21...Microphysical properties of sea fog and correlations of these properties were analyzed based on the measurements from a comprehensive field campaign carried out from 15 March to 18 April 2010 on Donghai Island (21°35″N, 110°32″5′E) in Zhanjiang, Guangdong Province, China. There were four types of circula- tion pattern in favor of sea fog events in this area identified, and the synoptic weather pattern was found to influence the microphysical properties of the sea fogs. Those influenced by a warm sector in front of a cold front or the anterior part of low pressure were found to usually have a much longer duration, lower visibility, greater liquid water content, and bigger fog droplet sizes. A fog droplet number concentration of N≥1 cm-a and liquid water content of L≥0.001 g m-a can be used to define sea fogs in this area. The type of fog droplet size distribution of the sea fog events was mostly monotonically-decreasing, with the spectrum width always being 〉20 μm. The significant temporal variation of N was due in large part to the number concentration variation of fog droplets with radius 〈3 μm. A strong collection process appeared when droplet spectrum width was 〉10 μm, which subsequently led to the sudden increase of droplet spectrmn width. The doln- inant physical process during the sea fog events was activation with subsequent condensational growth or reversible evaporation processes, but turbulent mixing also played an important role. The collection process occurred, but was not vital.展开更多
This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer...This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.展开更多
Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and...Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.展开更多
Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during ...Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (30°17′N, 109°16′E), Hubei Province, China. The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period, while the rate was only 0:4 mm h-1 without sleet and freezing drizzle. The rain intensity, liquid water content (LWC), and diameter of freezing drizzle stayed at low values. The development of microphysical properties of fog was suppressed in the freezing drizzle period. A threshold diameter (Dc) was proposed to estimate the influence of freezing drizzle on different size ranges of fog droplets. Fog droplets with a diameter less than Dc would be affected slightly by freezing drizzle, while larger fog droplets would be affected significantly. Dc had a correlation with the average rain intensity, with a correlation coefficient of 0.78. The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak, while they became poor positive correlations, or even negative correlations during freezing drizzle period. The direct contribution of freezing drizzle to ice thickness was about 14.5%. Considering both the direct and indirect effects, we suggest that freezing drizzle could act as a "catalyst" causing serious icing conditions.展开更多
Long-term observational data indicated a decreasing trend for the amount of autumn precipitation(i.e. 54.3 mm per decade) over Mid-Eastern China, especially after the 1980s(~ 5.6% per decade). To examine the cause of ...Long-term observational data indicated a decreasing trend for the amount of autumn precipitation(i.e. 54.3 mm per decade) over Mid-Eastern China, especially after the 1980s(~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy(i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Our results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to relatively more stable synoptic systems in autumn. The impact of large-scale circulation dominant in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.展开更多
This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in ...This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases.展开更多
In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five ...In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five tropical cyclones(TCs) in 2013. The results show that the ice-phase clouds of a mature TC are mainly above 5 km. With increasing altitude, the cloud droplet effective radius decreases, and the particle number concentration increases. Ice water content first increases and then decreases with increasing height. In the eye area, in addition to the well-known warm-core area, another warm core is also apparent around the eye at a height of 8 to 15 km. The horizontal distribution of precipitation is characterized by large-scale stratiform precipitation mixed with independent convective precipitation. The height of precipitation is mostly below 7.5 km, and the heavy rain is mainly below 5 km. When the peripheral convective clouds are strong enough, ice particles would be generated, thus providing conditions that are favourable for the formation of precipitation below.展开更多
The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Verti...The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.展开更多
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ...To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.展开更多
Fog simulation and prediction are becoming increasingly important in China because of the great impact of fog on traffic and other human activities. More studies are needed to have a better understanding of the format...Fog simulation and prediction are becoming increasingly important in China because of the great impact of fog on traffic and other human activities. More studies are needed to have a better understanding of the formation mechanisms and life cycles of fogs. This work uses data from two fog cases observed in Wuqing, Tianjin, in 2009. The data include aerosol size distribution, fog droplet size distribution, fog liquid water content, and meteorological properties. The results show that increasing aerosols can increase the number concentration of fog droplets and decrease fog droplet size, which is consistent with the first aerosol indirect effect found in clouds. It is also shown that increased aerosols can lead to lower visibility in fogs. This work demonstrates that the first aerosol indirect effect plays an important role in fogs.展开更多
Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature d...Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15 μm, while that within the cloud track ranged from 15 to 26 μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7 μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds, and the maximum temperature differences reached 4.2 and 3.9℃ at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃ of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track. The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22 min after seeding. The formation of a cloud track in the supercooled stratiform clouds was mainly because that the seeded cloud volume glaciated into ice hydrometeors that precipitated and so lowered cloud top height. A thin line of new water clouds formed in the middle of the seeded track between 38 and 63 min after seeding, probably as a result of rising motion induced by the released latent heat of freezing. These clouds disappeared in the earlier segments of the seeded track, which suggested that the maturation of the seeding track was associated with its narrowing and eventual dissipation due to expansion of the tops of the ambient clouds from the sides inward.展开更多
The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aeroso...The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale.展开更多
A large number of in-situ measurements of cloud-precipitation microphysical properties have been made since 1960, including measurements of particle size distribution, particle concentration, and liquid water content ...A large number of in-situ measurements of cloud-precipitation microphysical properties have been made since 1960, including measurements of particle size distribution, particle concentration, and liquid water content of clouds and rain. These measurements have contributed to considerable progress in understanding microphysical processes in clouds and precipitation and significant improvements in parameterizations of cloud microphysics in numerical models. This work reviews key findings regarding cloud-precipitation microphysics over China. The total number concentrations of various particles vary significantly, with certain characteristic spatial scales. The size distributions of cloud droplets in stratiform clouds can generally be fit with gamma distributions, but the fit parameters cover a wide range. Raindrop size distributions(RSDs)associated with stratiform clouds can be fit with either exponential or gamma distributions, while RSDs associated with convective or mixed stratiform-cumuliform clouds are best fit with gamma distributions.Concentrations of ice nuclei(IN) over China are higher than those observed over other regions, and increase exponentially as temperature decreases. The particle size distributions of ice crystals, snow crystals, and hailstones sampled at a variety of locations can be reliably approximated by using exponential distributions,while aerosol particle size distributions are best described as the sum of a modified gamma distribution and a Junge power-law distribution. These results are helpful for evaluating and improving the fidelity of physical processes and hydrometeor fields simulated by microphysical parameterizations. The comprehensive summary and analysis of previous work presented here also provide useful guidelines for the design of future observational programs.展开更多
The characteristics of springtime aerosols,including their optical and microphysical properties,were analyzed for the months of March to May of 2009 in Gwangju(35.23°N,126.84°E),Korea.A high Light Detectio...The characteristics of springtime aerosols,including their optical and microphysical properties,were analyzed for the months of March to May of 2009 in Gwangju(35.23°N,126.84°E),Korea.A high Light Detection and Ranging(LIDAR)-derived aerosol depolarization ratio(δ) of 0.25 ± 0.04 was determined on dust particles during the observation period.The?ngstr?m exponent values of the 440–870 nm wavelength pair(?_(440–870)) and single-scattering albedo at 675 nm(Ω_(675)) measured by a CIMEL sun/sky radiometer were 0.77 ± 0.19 and 0.95 ±0.01,respectively.The elevated dust layers reached a maximum elevation of 4 km above sea level.Anthropogenic/smoke particles that originated from highly populated/industrialized regions could be distinguished by their relatively smaller particle size(?_(440–870) ranged between1.33 and 1.36) and higher light-absorbing(Ω_(675) of 0.92 ± 0.01) characteristics.These aerosols are mostly distributed at altitudes 〈 1.2 km.The root-mean-square deviation(RMSD) between the aerosol optical depth(AOD,τ) derived from LIDAR_((τ_(LIDAR))) and from the CIMEL sun/sky radiometer_((τ_(CIMEL))) varied with respect to the surface PM10 concentration.The RMSD between τ_(LIDAR) and τ_(CIMEL) was as low as 13% under lower PM_(10) concentration levels(〈 100 μg/m^3).In contrast,the RMSD between τ_(LIDAR) and τ_(CIMEL) increased three times(~31%) under high surface PM_(10) concentration levels(〉100 μg/m^3).These results suggest that the accuracy of τ_(LIDAR) is influenced by specific atmospheric conditions,regardless of its uncertainty.展开更多
文摘In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer.
基金mainly provided by the Meteorology Fund of the Ministry of Science and Technology (Grant No. GYHY[QX] 2007-6-26)the National Natural Science Foundation of China (Grant No. 41275151)+1 种基金the Qing-Lan Project for Cloud-Fog-Precipitation-Aerosol Study in Jiangsu Province, the Graduate Student Innovation Plan for the Universities of Jiangsu Province (Grant No. CX10B 292Z)a project funded by the Priority Academic Development of Jiangsu Higher Education Institutions
文摘Microphysical properties of sea fog and correlations of these properties were analyzed based on the measurements from a comprehensive field campaign carried out from 15 March to 18 April 2010 on Donghai Island (21°35″N, 110°32″5′E) in Zhanjiang, Guangdong Province, China. There were four types of circula- tion pattern in favor of sea fog events in this area identified, and the synoptic weather pattern was found to influence the microphysical properties of the sea fogs. Those influenced by a warm sector in front of a cold front or the anterior part of low pressure were found to usually have a much longer duration, lower visibility, greater liquid water content, and bigger fog droplet sizes. A fog droplet number concentration of N≥1 cm-a and liquid water content of L≥0.001 g m-a can be used to define sea fogs in this area. The type of fog droplet size distribution of the sea fog events was mostly monotonically-decreasing, with the spectrum width always being 〉20 μm. The significant temporal variation of N was due in large part to the number concentration variation of fog droplets with radius 〈3 μm. A strong collection process appeared when droplet spectrum width was 〉10 μm, which subsequently led to the sudden increase of droplet spectrmn width. The doln- inant physical process during the sea fog events was activation with subsequent condensational growth or reversible evaporation processes, but turbulent mixing also played an important role. The collection process occurred, but was not vital.
基金jointly supported by the China National Science Foundation under Grant Nos.41875172 and 42075192。
文摘This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.
基金the National Natural Science Foundation of China (Grant No. 40975014)the basic scientific and operational project "observation and retrieval of microphysical parameters with multiple wavelength radars"
文摘Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.
基金supported by the National Key Technology R&D Program (Grant No. 2008BAC48B01)the National Natural Science Foundation of China (Grant Nos. 40775012 and 41275151)+2 种基金the Jiangsu Province Qinglan Project for Cloud Fog Precipitationthe Aerosol Research Group, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Graduate Student Innovation Plan in the Universities of Jiangsu Province
文摘Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (30°17′N, 109°16′E), Hubei Province, China. The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period, while the rate was only 0:4 mm h-1 without sleet and freezing drizzle. The rain intensity, liquid water content (LWC), and diameter of freezing drizzle stayed at low values. The development of microphysical properties of fog was suppressed in the freezing drizzle period. A threshold diameter (Dc) was proposed to estimate the influence of freezing drizzle on different size ranges of fog droplets. Fog droplets with a diameter less than Dc would be affected slightly by freezing drizzle, while larger fog droplets would be affected significantly. Dc had a correlation with the average rain intensity, with a correlation coefficient of 0.78. The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak, while they became poor positive correlations, or even negative correlations during freezing drizzle period. The direct contribution of freezing drizzle to ice thickness was about 14.5%. Considering both the direct and indirect effects, we suggest that freezing drizzle could act as a "catalyst" causing serious icing conditions.
基金National Basic Research Program of China(2012CB955301)
文摘Long-term observational data indicated a decreasing trend for the amount of autumn precipitation(i.e. 54.3 mm per decade) over Mid-Eastern China, especially after the 1980s(~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy(i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Our results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to relatively more stable synoptic systems in autumn. The impact of large-scale circulation dominant in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.
基金supported by the National Key Research and Development Project(Grant No.2019YFA0606803,2016YFA0601704)the National Natural Science Foundation of China(Grant No.41925022)+1 种基金the Innovation and Development Project of China Meteorological Administration(CXFZ2022J036)the Science and Technology Development Fund of Hubei Meteorological Bureau(Grant No.2017Y06,2017Y07,2016Y06,2019Y10).
文摘This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases.
基金Young Scientists Fund of National Natural Science Foundation of China Grant(41505013,41575017)Natural Science Foundation of Shandong Province(BS2015HZ019)
文摘In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five tropical cyclones(TCs) in 2013. The results show that the ice-phase clouds of a mature TC are mainly above 5 km. With increasing altitude, the cloud droplet effective radius decreases, and the particle number concentration increases. Ice water content first increases and then decreases with increasing height. In the eye area, in addition to the well-known warm-core area, another warm core is also apparent around the eye at a height of 8 to 15 km. The horizontal distribution of precipitation is characterized by large-scale stratiform precipitation mixed with independent convective precipitation. The height of precipitation is mostly below 7.5 km, and the heavy rain is mainly below 5 km. When the peripheral convective clouds are strong enough, ice particles would be generated, thus providing conditions that are favourable for the formation of precipitation below.
基金funded by the Korea Meteorological Administration Research and Development Program (Grant No.CATER 2012-7080)a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (Grant No.2012R1A1A2002983)the Global Ph.D. Fellowship program sponsored by the National Research Foundation of Korea
文摘The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100304)the Chinese Natural Science Foundation (Grant No. 41005073)
文摘To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.
基金supported by the Chinese National Public Benefit Research Foundation of Meteorology(Grants Nos. GYHY200906025 and GYHY201006011)
文摘Fog simulation and prediction are becoming increasingly important in China because of the great impact of fog on traffic and other human activities. More studies are needed to have a better understanding of the formation mechanisms and life cycles of fogs. This work uses data from two fog cases observed in Wuqing, Tianjin, in 2009. The data include aerosol size distribution, fog droplet size distribution, fog liquid water content, and meteorological properties. The results show that increasing aerosols can increase the number concentration of fog droplets and decrease fog droplet size, which is consistent with the first aerosol indirect effect found in clouds. It is also shown that increased aerosols can lead to lower visibility in fogs. This work demonstrates that the first aerosol indirect effect plays an important role in fogs.
基金the National Natural Science Foundation of China under Grant No. 40575004the Chinese Ministry of Science and Technology (Grant 2005DIB3J099).
文摘Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15 μm, while that within the cloud track ranged from 15 to 26 μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7 μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds, and the maximum temperature differences reached 4.2 and 3.9℃ at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃ of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track. The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22 min after seeding. The formation of a cloud track in the supercooled stratiform clouds was mainly because that the seeded cloud volume glaciated into ice hydrometeors that precipitated and so lowered cloud top height. A thin line of new water clouds formed in the middle of the seeded track between 38 and 63 min after seeding, probably as a result of rising motion induced by the released latent heat of freezing. These clouds disappeared in the earlier segments of the seeded track, which suggested that the maturation of the seeding track was associated with its narrowing and eventual dissipation due to expansion of the tops of the ambient clouds from the sides inward.
基金supported by the National Science Fund for Distinguished Young Scholars(41825011)the National Natural Science Foundation of China(42175153 and 42030608)the Basic Research Fund of Chinese Academy of Meteorological Sciences(2021Y001)。
文摘The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201006014 and GYHY201306005)National Natural Science Foundation of China(91437221,41175064,and 41175047)+1 种基金National(Key)Basic Research and Development(973)Program of China(2012CB417204)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2014R016 and 2014Z001)
文摘A large number of in-situ measurements of cloud-precipitation microphysical properties have been made since 1960, including measurements of particle size distribution, particle concentration, and liquid water content of clouds and rain. These measurements have contributed to considerable progress in understanding microphysical processes in clouds and precipitation and significant improvements in parameterizations of cloud microphysics in numerical models. This work reviews key findings regarding cloud-precipitation microphysics over China. The total number concentrations of various particles vary significantly, with certain characteristic spatial scales. The size distributions of cloud droplets in stratiform clouds can generally be fit with gamma distributions, but the fit parameters cover a wide range. Raindrop size distributions(RSDs)associated with stratiform clouds can be fit with either exponential or gamma distributions, while RSDs associated with convective or mixed stratiform-cumuliform clouds are best fit with gamma distributions.Concentrations of ice nuclei(IN) over China are higher than those observed over other regions, and increase exponentially as temperature decreases. The particle size distributions of ice crystals, snow crystals, and hailstones sampled at a variety of locations can be reliably approximated by using exponential distributions,while aerosol particle size distributions are best described as the sum of a modified gamma distribution and a Junge power-law distribution. These results are helpful for evaluating and improving the fidelity of physical processes and hydrometeor fields simulated by microphysical parameterizations. The comprehensive summary and analysis of previous work presented here also provide useful guidelines for the design of future observational programs.
基金supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-2012supported by“Development of Radiation/Aerosol Algorithms”project+2 种基金funded by Electronics and Telecommunications Research Institute(ETRI)subproject of“Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2016-01)”program funded by National Meteorological Satellite Center(NMSC)of Korea Meteorological Administration(KMA)supported by the grant of General Research Fund(project id:15205515)from the Research Grants Council of Hong Kong
文摘The characteristics of springtime aerosols,including their optical and microphysical properties,were analyzed for the months of March to May of 2009 in Gwangju(35.23°N,126.84°E),Korea.A high Light Detection and Ranging(LIDAR)-derived aerosol depolarization ratio(δ) of 0.25 ± 0.04 was determined on dust particles during the observation period.The?ngstr?m exponent values of the 440–870 nm wavelength pair(?_(440–870)) and single-scattering albedo at 675 nm(Ω_(675)) measured by a CIMEL sun/sky radiometer were 0.77 ± 0.19 and 0.95 ±0.01,respectively.The elevated dust layers reached a maximum elevation of 4 km above sea level.Anthropogenic/smoke particles that originated from highly populated/industrialized regions could be distinguished by their relatively smaller particle size(?_(440–870) ranged between1.33 and 1.36) and higher light-absorbing(Ω_(675) of 0.92 ± 0.01) characteristics.These aerosols are mostly distributed at altitudes 〈 1.2 km.The root-mean-square deviation(RMSD) between the aerosol optical depth(AOD,τ) derived from LIDAR_((τ_(LIDAR))) and from the CIMEL sun/sky radiometer_((τ_(CIMEL))) varied with respect to the surface PM10 concentration.The RMSD between τ_(LIDAR) and τ_(CIMEL) was as low as 13% under lower PM_(10) concentration levels(〈 100 μg/m^3).In contrast,the RMSD between τ_(LIDAR) and τ_(CIMEL) increased three times(~31%) under high surface PM_(10) concentration levels(〉100 μg/m^3).These results suggest that the accuracy of τ_(LIDAR) is influenced by specific atmospheric conditions,regardless of its uncertainty.