期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries 被引量:4
1
作者 Juan Zhang Huan Ye +1 位作者 Yaxia Yin Yuguo Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期308-314,共7页
Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and... Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and the shuttling of highly dissoluble lithium polysulfides generated during the cycles.Loading sulfur into porous carbons has been proved to be an effective approach to alleviate these issues.Mesoporous and microporous carbons have been widely used for sulfur accommodation,but mesoporous carbons have poor sulfur confinement,whereas microporous carbons are impeded by low sulfur loading rates.Here,a core-shell carbon,combining both the merits of mesoporous carbon with large pore volume and microporous carbon with effective sulfur confinement,was prepared by coating the mesoporous CMK-3 with a microporous carbon(MPC) shell and served as the carbon host(CMK-3 @MPC) to accommodate sulfur.After sulfur infusion,the as-obtained S/(CMK-3@MPC) cathode delivered a high initial capacity of up to 1422 mAh·g-1 and sustained 654 mAh·g-1 reversible specific capacity after 36 cycles at 0.1 C.The good performance is ascribed to the unique core-shell structure of the CMK-3@MPC matrix,in which sulfur can be effectively confined within the meso/microporous carbon host,thus achieving simultaneously high electrochemical utilization. 展开更多
关键词 core-shell structure microporous carbon coating mesoporous carbon lithium-sulfur batteries sulfur cathode
下载PDF
Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
2
作者 王正铎 朱惠钦 +3 位作者 杨丽珍 王新炜 刘忠伟 陈强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第4期424-429,共6页
To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypr... To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching. 展开更多
关键词 microporous polypropylene membrane lithium-ion battery plasma treatment and SiO_x coating
下载PDF
Tubes with coated and sintered porous surface for highly efficient heat exchangers 被引量:1
3
作者 Hong Xu Yulin Dai +6 位作者 Honghai Cao Jinglei Liu Li Zhang Mingjie Xu Jun Cao Peng Xu Jianshu Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2018年第3期367-375,共9页
Surface modification is a direct and effective way to enhance the efficiency of heat exchangers. Surface modification by forming a microporous coated layer can greatly enhance the boiling heat transfer and thus achiev... Surface modification is a direct and effective way to enhance the efficiency of heat exchangers. Surface modification by forming a microporous coated layer can greatly enhance the boiling heat transfer and thus achieve a high performance. In this paper, we systematically investigate the boiling behavior on a plain surface with/ without sintered microporous coatings of copper powder. The results demonstrated that the sintered surface has a better performance in nucleate boiling due to the increased nucleation sites. The superheat degree is lower and the bubble departure diameter is larger for the sintered surface than for the plain surface, so the heat can be carried away more efficiently on the sintered surface. In addition, the heat transfer capacity on the sintered surface depends on both the powder size and the coating thickness for a high flux tube. The optimum heat transfer capacity can be obtained when the thickness of the microporous coating layer is 3-5 times of the sintered powder diameter. As a result, the heat transfer coefficient tube can be up to 3 times higher for the tube with a sintered surface than that with a plain surface, showing a pronounced enhancement in heat transfer and a high potential in chemical engineering industry application. 展开更多
关键词 microporous coating layer surface modification boiling enhancement SINTERING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部