期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Continuous synthesis of N,N-dicyanoethylaniline in microreactors:Reaction kinetics and process intensification
1
作者 Pengcheng Lu Yaoyao Li +5 位作者 Jianjun Zhang Yuchao Zhao Qingqiang Wang Ying Chen Nan Jin Xiugang Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期95-105,共11页
Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic o... Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic operation pose challenges in achieving both high safety and reaction efficiency.In this study,a continuous cyanoethylation of phenylamine for synthesizing N,N-dicyanoethylaniline in a microreactor system has been developed.By optimizing the reaction conditions,the reaction time was significantly reduced from over 2 h in batch operation to approximately 14 min in the microreactor,while high conversion and selectivity were maintained.Based on the reaction network constructed,the reaction kinetics was established,and the kinetic parameters were then determined.These findings provide valuable insights into a controllable cyanoethylation reaction,which would be helpful for the design of efficient processes and optimization of reactors. 展开更多
关键词 Cyanoethylation MICROREACTOR KINETICS N N-dicyanoethylaniline Optimization Safety
下载PDF
Assessing mixing uniformity in microreactors via in-line spectroscopy
2
作者 Shusaku Asano Shinji Kudo +3 位作者 Taisuke Maki Yosuke Muranaka Kazuhiro Mae Jun-ichiro Hayashi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期119-124,共6页
Mixing behavior is critical for enhancing the selectivity of fast chemical reactions in microreactors.A high Reynolds number(Re)improves the mixing rate and selectivity of the reactions,but some exceptions of increasi... Mixing behavior is critical for enhancing the selectivity of fast chemical reactions in microreactors.A high Reynolds number(Re)improves the mixing rate and selectivity of the reactions,but some exceptions of increasing side product yield with the higher Re have been reported.This study investigated the mixing uniformity in microreactors with in-line UV-vis spectroscopy to clarify the relationship between reaction selectivity and chaotic mixing with the higher Re.A colorization experiment of thymolphthalein in an acidic solution was conducted with an excess acid amount to the base to indicate a non-uniformly mixed region.Non-uniformity significantly increased with Re.At the same time,the degree of mixing,which was measured by a usual decolorization experiment,showed that the mixing rate increased with Re.The in-line analysis of the Villermaux-Dushman reaction during the mixing clarified that side product yield significantly increased with Re at around 300 and then decreased at around 1100.These results suggest the compensation effect between the mixing uniformity and mixing rate on the selectivity of the mixing-sensitive reactions.Faster mixing,characterized by a larger Re,can disturb mixing uniformity and,in some cases,decrease reaction selectivity. 展开更多
关键词 MICROREACTOR Villermaux-Dushman reaction In-line analysis MIXING Mass transfer UNIFORMITY
下载PDF
Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors
3
作者 Tengjie Wang Wenkai Li +2 位作者 Xuehui Ge Ting Qiu Xiaoda Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期243-250,共8页
High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the ... High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the transesterification of dimethyl carbonate(DMC)with ethylene glycol(EG)is provided in this work.However,this reaction is so fast that the reaction kinetics,which is essential for the industrial design,is hard to get by the traditional measuring method.In this work,an easy-to-assemble microreactor was used to precisely determine the reaction kinetics for the fast transesterification of DMC with EG using sodium methoxide as catalyst.The effects of flow rate,microreactor diameter,catalyst concentration,reaction temperature,and reactant molar ratio were investigated.An activity-based pseudohomogeneous kinetic model,which considered the non-ideal properties of reaction system,was established to describe the transesterification of DMC with EG.Detailed kinetics data were collected in the first 5 min.Using these data,the parameters of the kinetic model were correlated with the maximum average error of 11.19%.Using this kinetic model,the kinetic data at different catalyst concentrations and reactant molar ratios were predicted with the maximum average error of 13.68%,suggesting its satisfactory prediction performance. 展开更多
关键词 Microreactor KINETICS Ethylene carbonate synthesis TRANSESTERIFICATION Sodium methoxide
下载PDF
Gas-liquid-liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors 被引量:2
4
作者 Yanyan Liu Chaoqun Yao Guangwen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期85-94,共10页
Gas-liquid-liquid three-phase slug flow was generated in both hydrophilic and hydrophobic microreactors with double T-junctions.The bubble-droplet relative movement and the local mass transfer within the continuous sl... Gas-liquid-liquid three-phase slug flow was generated in both hydrophilic and hydrophobic microreactors with double T-junctions.The bubble-droplet relative movement and the local mass transfer within the continuous slug and the dispersed droplet were investigated.It was found that bubbles moved faster than droplets under low capillary number(Ca),while droplets moved faster upon the increase of Ca due to the increased inertia.For the first time,we observed that the increased viscosity of droplets fastened the droplet movement.The mass transfer in the continuous slug was dominated by convection,leading to nearly constant global mass transfer coefficient(k_(L)a);while that in the dispersed droplet was dominated by diffusion,resulting in k_(L) decreasing along the channel.Such features are analogical to the corresponding gas-liquid or liquid-liquid two-phase slug flow,but the formation of bubble-droplet clusters caused by relative movement lowered the absolute mass transfer coefficient.These results provide insights for the precise manipulation of gas-liquid-liquid slug flow in microreactors towards process optimization. 展开更多
关键词 Mass transfer Multiphase flow Slug flow MICROREACTOR Colorimetric method
下载PDF
High-efficiency and safe synthesis of tonalid via two Friedel-Crafts reactions in continuous-flow microreactors
5
作者 Yang Han Yuanyuan Liu +3 位作者 Shiwei Wang Xuehui Ge Xiaoda Wang Ting Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第12期126-135,共10页
Tonalid,an important fragrance ingredient with widespread applicatio n,was synthesized via two FriedelCrafts reactions,which were catalyzed by AlCl_(3).The traditional tonalid production was conducted in batch stirrin... Tonalid,an important fragrance ingredient with widespread applicatio n,was synthesized via two FriedelCrafts reactions,which were catalyzed by AlCl_(3).The traditional tonalid production was conducted in batch stirring tank reactors,suffering from low production capacity and the safety hazard of temperature runaway.To solve these problems,the continuous-flow technologies were developed for the highefficiency and intrinsically safe synthesis of tonalid in microreactors.Catalyst AlCl_(3)was neatly homogenized in proper solvents by forming complex with reactant,which was a necessary step for the continuous synthesis in microreactors.Several reaction conditions,including reactant molar ratio,catalyst concentration,temperature,and microchannel hydrodynamic diameter,were investigated for the two Friedel-Crafts reactions in micro reactors.At optimized conditions,the yields of the two Friedel-Crafts reactions were 44.15%and 97.55%,respectively.In comparison with the batch reactors,the reaction times of these two reactions could both be reduced by nearly two thirds in microreactors at the similar yield. 展开更多
关键词 MICROREACTOR Continuous synthesis Process intensification Tonalid Friedel-Crafts reaction
下载PDF
Layer-by-layer fabrication of montmorillonite coating immobilizing Cu_(2)O nanoparticles for continuously catalyzing glycerol to dihydroxyacetone
6
作者 Kejin Li Jiahui Liu +2 位作者 Dajian Li Xiaolan Chen Chunhui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期263-275,共13页
Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in m... Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in microreactors remains challenging.In this investigation,a technique for creating Cu_(2)O/montmorillonite catalyst coating,using electrostatic attraction for layer-by-layer self-assembly,was proposed.The montmorillonite film's morphology and thickness could be efficiently regulated by adjusting the degree of exfoliation and surface charge of montmorillonite,alongside layer-by-layer coating times.The Cu_(2)O nanoparticles were immobilized using the flow deposition approach.The resulting Cu_(2)O@montmorillonite-film-coated capillary microreactor successfully transformed glycerol into dihydroxyacetone.The conversion of glycerol and product selectivity could be controlled by adjusting the molar ratio of reactants,temperature,residence time,and Cu_(2)O loading.The maximum glycerol conversion observed was 47.6%,with a 27%selectivity toward dihydroxyacetone.The study presents a technique for immobilizing montmorillonite-based catalyst coatings in capillary tubing,which can serve as a foundation for the future application of microreactors in glycerol conversion. 展开更多
关键词 Microreactor COATING MONTMORILLONITE GLYCEROL Cu_(2)O
下载PDF
Enhancement of liquid-liquid micromixing performance in curved capillary microreactor by generation of Dean vortices
7
作者 Shaoyun Wu Zhuang Ma +3 位作者 Zichi Yang Suying Zhao Caijin Zhou Huidong Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期76-82,共7页
Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes w... Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors. 展开更多
关键词 MICROREACTOR Process intensification Micromixing performance Dean flow
下载PDF
Role of ultrasonic oscillation in chemical processes in microreactors:A mesoscale issue 被引量:4
8
作者 Shuainan Zhao Chaoqun Yao +2 位作者 Zhengya Dong Guangwen Chen Quan Yuan 《Particuology》 SCIE EI CAS CSCD 2020年第1期88-99,共12页
The integration of microreactor and ultrasound represents an emerging area for process intensification and has attracted considerable attention in recent years.One of the most important meso-scientific issues in ultra... The integration of microreactor and ultrasound represents an emerging area for process intensification and has attracted considerable attention in recent years.One of the most important meso-scientific issues in ultrasound techniques is acoustic cavitation,which plays a vital role in the macroscopic performance of an ultrasonic microreactor.In this review,we first briefly summarize the latest research on acoustic cavitation phenomena in microreactors.The effects of channel configuration,solvent properties,and ultrasound parameters are systematically reviewed.In addition,the role of acoustic cavitation in various chemical processes(e.g.,mixing,absorption,emulsification,and particle synthesis)is presented from a mesoscale perspective,which in turn provides guidance for ultrasound applications.A thorough under-standing of the ultrasound intensification mechanism will contribute to the future development of this promising technology. 展开更多
关键词 ULTRASOUND MICROREACTOR Acoustic cavitation MESOSCALE Process intensification
原文传递
Synthesis of AgInS_2 QDs in droplet microreactors:Online fluorescence regulating through temperature control 被引量:1
9
作者 Haotian Ma Liangjun Pan +2 位作者 Ji Wang Li Zhang Zhiling Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第1期79-82,共4页
For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on b... For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity. 展开更多
关键词 AgInS2 Quantumdot DROPLET MICROREACTOR Temperature FLUORESCENCE property
原文传递
Double Emulsion Droplets as Microreactors for Synthesis of Magnetic Macroporous Polymer Beads 被引量:2
10
作者 Wei-cai Wang Chao Peng +3 位作者 Kai Shi Yan-xiong Pan 张海山 姬相玲 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第12期1639-1645,共7页
An easy method is presented to fabricate monodisperse magnetic macroporous polymer beads(MMPBs). Waterin-oil high internal phase emulsion(HIPE) is prepared by emulsifying aqueous iron ions solution in an oil phase... An easy method is presented to fabricate monodisperse magnetic macroporous polymer beads(MMPBs). Waterin-oil high internal phase emulsion(HIPE) is prepared by emulsifying aqueous iron ions solution in an oil phase containing monomers. The HIPE is introduced into a simple microfluidic device to fabricate monodisperse(water-in-oil)-in-water double emulsion droplets. The droplets serve as microreactors to synthesize Fe3O4 nanoparticles and are on-line polymerized to form MMPBs. The prepared MMPBs display uniform size, interconnected porous structure, superparamagnetic behavior and uniform distribution of Fe3O4 in polymer matrix. The MMPBs are characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometry(VSM). We believe that this method is a universal technique in preparing macroporous nanocomposite beads. 展开更多
关键词 Double emulsion droplets Magnetic macroporous polymer beads Microreactor.
原文传递
Integrated synthesis and ripening of AgInS_(2)QDs in droplet microreactors:An update fluorescence regulating via suitable temperature combination
11
作者 Ji Wang Hao-Tian Ma +2 位作者 Liang-Jun Pan Li Zhang Zhi-Ling Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3767-3771,共5页
Aqueous phase synthesized ternary I-III-VI_(2) Quantum dots(QDs)are getting more and more attention in biology researches,for their good biocompatibility and easy-to-adjust fluorescence properties.However,the quantum ... Aqueous phase synthesized ternary I-III-VI_(2) Quantum dots(QDs)are getting more and more attention in biology researches,for their good biocompatibility and easy-to-adjust fluorescence properties.However,the quantum yield(QY)of these aqueous phase synthesized QDs are often pretty low,which seriously hindered their further applications in this field.In general,the ripening of the QDs helps to enhance their QY,closely related to the ripening temperature.But it is still hard to precisely control the fluorescence performance of the QDs products,due to the difficulties in precise temperature control and cumbersome temperature adjusting operations in batch reactors.Here we proposed an integrated droplet microfluidic chip for the automated and successive AgInS_(2)QDs synthesis and ripening,with both temperatures controlled independently,precisely but easily.Taking advantage of the space-time transformation of the droplet microfluidic chips,the suitable temperature combination for Ag In S_(2)QDs synthesis and ripening was studied,and the high-performance AgInS_(2)QDs were obtained.In addition,the reason for the decrease of QY of AgInS_(2)QDs at higher ripening temperature was also explored. 展开更多
关键词 AgInS_(2) Quantum dot RIPENING Droplet microreactor Temperature control
原文传递
Rate Acceleration of the Baylis-Hillman Reaction within Microreactors
12
作者 杨俊 齐莉 +2 位作者 乔娟 陈义 马会民 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第11期2385-2388,共4页
Based on microreactors, the representative Baylis-Hillman reaction of cyclopent-2-enone coupled with 4-nitrobenzaldehyde in the presence of imidazole could be accelerated by manipulating the temperature and electric f... Based on microreactors, the representative Baylis-Hillman reaction of cyclopent-2-enone coupled with 4-nitrobenzaldehyde in the presence of imidazole could be accelerated by manipulating the temperature and electric field. Furthermore, the electric field was used in promoting Baylis-Hillman reaction for the first time with the rate acceleration approximately 5.2-fold higher than that carried out in conventional vessels as well as 4.0-fold under control of temperature. Meanwhile, the products of Baylis-Hillman reaction at every time point could be collected and then determined by capillary micellar electrokinetic chromatography. 展开更多
关键词 MICROREACTOR reaction rate acceleration Baylis-Hillman reaction
原文传递
Preparation of coemissive luminescent nanoparticles in continuous-flow microreactors for efficient light-harvesting systems
13
作者 Andrea Pucci 《Aggregate》 2022年第6期3-4,共2页
To address the energy challenges,scientists have designed various artificial light-harvesting systems inspired by photosynthesis.Notably,for light-harvesting systems,an energytransfer efficiency close to 100%with an a... To address the energy challenges,scientists have designed various artificial light-harvesting systems inspired by photosynthesis.Notably,for light-harvesting systems,an energytransfer efficiency close to 100%with an antenna effect greater than 10 is generally considered a good application criterion.[1]Today,building an efficient light-harvesting system at a low cost is still demanding. 展开更多
关键词 CEAA dyes FRET LIGHT-HARVESTING MICROREACTOR
原文传递
An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles 被引量:2
14
作者 Wenting Fan Fang Zhao +2 位作者 Ming Chen Jian Li Xuhong Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期85-91,共7页
A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM micro... A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM microchannels(V-typed and U-typed)proposed in this work exhibited markedly better mixing performances than the Zigzag and capillary microchannels due to the promotion of Dean vortices.Complete mixing was achieved in the V-typed microchannel in 2.7 s at an inlet Reynolds number of 27.Fe_(3)O_(4) nanoparticles synthesized in a planar glass microreactor with the V-typed microchannel,possessing an average size of 9.3 nm and exhibiting superparamagnetism,had obviously better dispersity and uniformity and higher crystallinity than those obtained in the capillary microreactor.The new CSCM microreactor developed in this work can act as a potent device to intensify the synthesis of similar inorganic nanoparticles via multistep chemical precipitation processes. 展开更多
关键词 MICROREACTOR Continuous serially connected micromixers MIXING Nanoparticles
下载PDF
Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals 被引量:1
15
作者 Mingzhi Li Zhikai Liu +4 位作者 Wang Yao Chao Xu Yangping Yu Mei Yang Guangwen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期32-41,共10页
Ligand assisted reprecipitation(LARP)is a widely used method for cesium lead halide perovskite nanocrystals(NCs)synthesis.Nevertheless,the ultrafast kinetics of LARP,as well as the inefficient transport properties and... Ligand assisted reprecipitation(LARP)is a widely used method for cesium lead halide perovskite nanocrystals(NCs)synthesis.Nevertheless,the ultrafast kinetics of LARP,as well as the inefficient transport properties and discontinuity of batch reactors,challenge the particle size control and experimental repeatability.To address these issues,an ultrasonic cavitation-enabled microfluidic approach was developed to achieve the continuous synthesis of cesium lead halide perovskite via LARP.It was found that the mixing between the good solvent and antisolvent in the microchannel was greatly enhanced by intensive ultrasonic cavitation.The mixing time could be reduced to below 10 ms under the irradiation of 35 W ultrasound.By modulating the mixing degree,LARP was proved to be a mixing-sensitive process.The effects of ultrasonic power,ultrasonic treatment time,total flow rate,water additive,and reprecipitation temperature on the synthesis of CsPbBr_(3) NCs were systematically investigated.As compared to CsPbBr_(3) NCs synthesized in the batch reactor,the sample synthesized via the ultrasonic cavitation-enabled microfluidic approach possessed stronger photoluminescence intensity and better repeatability.Moreover,the ultrasonic cavitation-enabled microfluidic approach could also realize the continuous synthesis of cesium lead halide perovskite NCs with different halide compositions to cover a wide visible spectrum(426-661 nm).The ultrasonic cavitation-enabled microfluidic approach paved the way for the large-scale of high-quality cesium lead halide perovskite NCs. 展开更多
关键词 MICROREACTOR Ultrasound MIXING CsPbBr_(3)nanocrystals Synthesis
下载PDF
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
16
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR Microchannels Mass transfer WETTABILITY Taylor flow Gas-liquid two-phase
下载PDF
Continuous,efficient and safe synthesis of 1-oxa-2-azaspiro[2.5]octane in a microreaction system
17
作者 Jinpei Huang Xingwei Lu +2 位作者 Xuejing Zhang Yiqiang Jin Yifeng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期37-42,共6页
1-Oxa-2-azaspiro[2.5]octane,as one of N-H oxaziridines,is a selective electrophilic aminating agent for N-,S-,C-,and O-nucleophiles.It has the features of stereoselectivity and the absence of formation of strongly aci... 1-Oxa-2-azaspiro[2.5]octane,as one of N-H oxaziridines,is a selective electrophilic aminating agent for N-,S-,C-,and O-nucleophiles.It has the features of stereoselectivity and the absence of formation of strongly acidic or basic byproducts,leading to considerable interest in the development of organic synthetic methods.Currently,the economically feasible route of production of 1-oxa-2-azaspiro[2.5]octane is the reaction of cyclohexanone with ammonia and sodium hypochlorite.However,due to strong exothermic reactions,massive gas release and heterogeneous reaction,the controllability,efficiency and safety of the reaction are in great difficulty using batch technology.In this paper,a microreaction system containing predispersion,reaction and phase separation was introduced into the preparation of 1-oxa-2-azaspiro[2.5]octane.The research results showed that precise control of the process including droplet dispersion,temperature control,reaction time control and fast continuous phase separation,was the key to process intensification.Under optimal conditions,the concentration of 1-oxa-2-azaspiro[2.5]octane in product obtained by microreaciton system(~2.0 mol·L^(-1))was much higher than that obtained by batch technology(0.2-0.4 mol·L^(-1)),which demonstrated that the continuous-flow synthesis would be a more efficient substitute for batch synthesis.Meanwhile,the results of the derivation experiments also showed that the aminating agent solution with higher concentration was more advantageous in the applications. 展开更多
关键词 Multiphase reaction MICROREACTOR SYNTHESIS Oxaziridine Process intensification
下载PDF
Mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device
18
作者 Xin Xu Na Xu +3 位作者 Wei Zhang Junwen Wang Yao Li Chen Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期37-48,共12页
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow... Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification. 展开更多
关键词 Gas-liquid microreactor Annular flow Mass transfer mechanism Mass transfer relationship Multi-objective particle swarm optimization
下载PDF
Study of Macro-Mixing in a Microreactor
19
作者 Cao Huili Tang Xiaojin +1 位作者 Bao Di Hou Shuandi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第4期117-126,共10页
The transfer rate between fluids in a microreactor is directly influenced by the mixing within the reactor, which subsequently impacts the reaction rate. This paper investigates the flow behavior and macro-mixing perf... The transfer rate between fluids in a microreactor is directly influenced by the mixing within the reactor, which subsequently impacts the reaction rate. This paper investigates the flow behavior and macro-mixing performance in a microreactor. First, the flow performance of the Ehrfeld Miprowa microreactor is studied. Cold experiments are conducted to examine fundamental flow laws and verify the accuracy of the chosen computational fluid dynamics simulation model.Subsequently, macro-mixing performance in the microreactor, both with and without internal components, is investigated through both experiment and simulation. A bromocresol violet–NaOH–H2SO4 system is utilized in the macro-mixing experiments, which explore the effects of flow rate and internal components on macro-mixing. The Navier–Stokes equation is adopted as the computational model for macro-mixing simulations, which also consider the mass transfer and diffusion of tracer. The simulation results are in good agreement with the experimental results. Both experimental and simulation results demonstrate that the presence of internal components in the microreactor enhance its macro-mixing performance. 展开更多
关键词 MICROREACTOR flow model macro-mixing
下载PDF
Synchrotron Radiation Lithography and MEMS Technique at NSRL 被引量:1
20
作者 LIU Gang, TIAN Yang chao (National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China) 《光学精密工程》 EI CAS CSCD 2001年第5期455-457,共3页
Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical syste... Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL. 展开更多
关键词 SYNCHROTRON RADIATION LITHOGRAPHY (SRL) MEMS microreactors
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部