Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo e...Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo end-stage surgery.Therefore,future treatments should focus on early detection and intervention of regional lesions.Microrobots have been gradually used in organisms due to their advantages of intelligent,precise and minimally invasive targeted delivery.Through the combination of control and imaging systems,microrobots with good biosafety can be delivered to the desired area for treatment.In the musculoskeletal system,microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body.Compared to traditional biomaterial and tissue engineering strategies,active motion improves the efficiency and penetration of local targeting of cells/drugs.This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system.We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.展开更多
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fu...Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fuel-free propulsion,favorable biocompatibility,and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media,efficient cargo delivery and favorable biocompatibility.A noteworthy number of degradable metal-based micromotors employ bubble propulsion,utilizing water as fuel to generate hydrogen bubbles.This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications.In addition,understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance.Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor.Here we review the design and recent advancements of metallic degradable micromotors.Furthermore,we describe the controlled degradation,efficient in vivo drug delivery,and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications.Moreover,we discuss micromotors’efficacy in detecting and destroying environmental pollutants.Finally,we address the limitations and future research directions of degradable metallic micromotors.展开更多
Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes a...Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners.展开更多
Since natural orifice transluminal endoscopic surgery(NOTES) was first described by Anthony Kalloo,it has attracted tremendous interest from surgeons and gastroenterologist all around the world.This special issue of t...Since natural orifice transluminal endoscopic surgery(NOTES) was first described by Anthony Kalloo,it has attracted tremendous interest from surgeons and gastroenterologist all around the world.This special issue of the World Journal of Gastrointestinal Surgery explores the current possibilities and future potential of the most disruptive revolution in the field of surgery represented by the NOTES approach.In the future,new technologies developed for this approach and deeper insight into several gastrointestinal diseases will lead to the design of completely new interven tional procedures and change the way we will operate,bringing us to the previously unimaginable goal of "no scar surgery".展开更多
This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current(DC) ...This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current(DC) micromotors. The open-loop and closed-loop approaches described here add the capability for net sidewise displacements of the microrobotic platform. A displacement is achieved by the execution of a number of repeating steps that depend on the desired displacement, the speed of the micromotors, and the elapsed time. Simulation and experimental results verified the performance of the proposed methodologies.展开更多
In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators....In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators. But the microrobot had some problems in walking and floating motions. In this paper, we propose a concept of hybrid microrobot (see Fig. 1). The microrobot is actuated by a pair of caudal fins, a base with legs and an array of artificial swim bladders. We have developed a prototype of the base with legs and one artificial swim bladder, respectively, and carried out experiments for evaluating their characteristics. Experimental results show the base with legs can realize walking speed of 6 mm/s and rotating speed of 7.1 degrees/s respectively, and the prototype of the artificial swim bladder has a maximum floatage of 2.6 mN. The experimental results also indicate that the microrobot has some advantages, such as walking motion with 2 degrees of freedom, the walking ability on rough surface (sand paper), the controllable floatage, etc. This kind of fish-like microrobot is expected for industrial and medical applications.展开更多
We have studied a biomimetic swimmer based on the motion of bacteria such as Escherichia coli (E. coli) theoretically andexperimentally. The swimmer has an ellipsoidal cell body propelled by a helical filament. The pe...We have studied a biomimetic swimmer based on the motion of bacteria such as Escherichia coli (E. coli) theoretically andexperimentally. The swimmer has an ellipsoidal cell body propelled by a helical filament. The performance of this swimmer wasestimated by modeling the dynamics of a swimmer in viscous fluid. We applied the Resistive Force Theory (RFT) on this modelto calculate the linear swimming speed and the efficiency of the model. A parametric study on linear velocity and efficiency tooptimize the design of this swimmer was demonstrated. In order to validate the theoretical results, a biomimetic swimmer wasfabricated and an experiment setup was prepared to measure the swimming speed and thrust force in silicone oil. The experimentalresults agree well with the theoretical values predicted by RFT. In addition, we studied the flow patterns surrounding thefilament with a finite element simulation with different Reynolds number (Re) to understand the mechanism of propulsion. Thesimulation results provide information on the nature of flow patterns generated by swimming filament. Furthermore, the thrustforces from the simulation were compared with the thrust forces from theory. The simulation results are in good agreement withthe theoretical results.展开更多
It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure s...It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.展开更多
Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hy...Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hydrogel based on N-isopropylacrylamide that achieved a fast and reversible deformation manipulated only by near-infrared(NIR)light.The hydrogel was fabricated by the projection micro stereolithography based 3D printing technique,which can rapidly prototype complex 3D structures.Furthermore,with the variation of the grayscale while manufacturing the hydrogel,the deformation of the hydrogel structure can be freely tuned within a few seconds by losing and absorbing water through adjusting the intensity and the irradiation direction of the NIR light,showing a potential application in ultra-fast object grabbing and transportation.The present study provides a new method for designing ultrafast photothermal responsive hydrogel based microrobot working in water.展开更多
This paper describes a novel design for the carrier mechanism of a pipe-inspection micro robot Based on this mechanism, a new micro robot for the pipes with diameter of 20mm has been developed. It can travel through b...This paper describes a novel design for the carrier mechanism of a pipe-inspection micro robot Based on this mechanism, a new micro robot for the pipes with diameter of 20mm has been developed. It can travel through both vertical pipes and curved pipes to make possible inspection that would be difficult with conventional endoscopes. This mechanism is composed of three units, two novel micro mechanisms called as a planetary wheel mechanism for robot drive, two micro electromagnetic motors and a flexible coupler.展开更多
A simple autonomous docking method based on infrared sensors for mobile self-reconfigurable relay microrobots is proposed in the paper.The IR guidance system composed of an IR receiver and four IR emitters is designed...A simple autonomous docking method based on infrared sensors for mobile self-reconfigurable relay microrobots is proposed in the paper.The IR guidance system composed of an IR receiver and four IR emitters is designed,analyzed and developed.The autonomous docking control method based on centering alignment and dynamic motion planning is adopted so that it has high efficiency and reliability.Two basic microrobot prototypes are developed,and related docking experiments are done to verify the feasibility of the approach.展开更多
High genetic variability of human immunodeficiency virus(HIV)has been a major intractable challenge to the practical design of vaccines.But a recent pioneer study published in PNAS Xenobots,is likely to revolutionize ...High genetic variability of human immunodeficiency virus(HIV)has been a major intractable challenge to the practical design of vaccines.But a recent pioneer study published in PNAS Xenobots,is likely to revolutionize HIV prevention as it presented the world's first living robot made of cells.In the advent of this discovery,we herein discuss the possibility of using living biological cell robots to target HIV-infected T lymphocytes,and the prospects of this approach being a new HIV vaccine.We capture the current research status and trend of advances in biological cell robots'design as a new HIV vaccine.The key differences between this novel vaccine and other HIV vaccines are highlighted.展开更多
Inspired by the fast,agile movements of insects,we present a 1.9 g,4.5 cm in length,piezoelectrically driven,quadrupedal microrobot.This microrobot uses a novel spatial parallel mechanism as its hip joint,which consis...Inspired by the fast,agile movements of insects,we present a 1.9 g,4.5 cm in length,piezoelectrically driven,quadrupedal microrobot.This microrobot uses a novel spatial parallel mechanism as its hip joint,which consists of two spatially orthogonal slider-crank linkages.This mechanism maps two inputs of two independent actuators to the decoupled swing and lift outputs of a leg,and each leg can produce the closed trajectories in the sagittal plane necessary for robot motion.Moreover,the kinematics of the transmission are analyzed,and the parameters of the flexure hinges are designed based on geometrical constraints and yield conditions.The hip joints,legs and exoskeletons are integrated into a five-layer standard laminate for monolithic fabrication which is composed of two layers of carbon fiber,two layers of acrylic adhesive and a polyimide film.The measured output force(15.97 mN)of each leg is enough to carry half of the robot’s weight,which is necessary for the robot to move successfully.It has been proven that the robot can successfully perform forward and turning motions.Compared to the microrobot fabricated with discrete components,the monolithically fabricated microrobot is more capable of maintaining the original direction of locomotion when driven by a forward signal and has a greater speed,whose maximum speed is 25.05 cm/s.展开更多
For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,clas...For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,classified as anaerobic,aquatic,and gram-negative microorganisms,exhibit remarkable motility and precise control over their internal biomineralization processes.This unique ability results in the formation of magnetic nanoparticles arranged along filamentous structures in a catenary fashion,enclosed within a membrane.These bacteria possess distinctive biochemical properties that facilitate their precise positioning within complex environments.By harnessing these biochemical attributes,MTB could potentially offer substantial advantages in the realm of cancer therapy.This article reviews the drug delivery capabilities of MTB in tumor treatment and explores various applications based on their inherent properties.The objective is to provide a comprehensive understanding of MTB-driven drug delivery and stimulate innovative insights in this field.展开更多
Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/na...Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/nano-robots(MNRs)offer distinct advantages,such as untethered and precise manipulation.The fusion of these technologies presents a promising avenue for achieving non-invasive targeted drug delivery.Here,we report a MOF-based magnetic microrobot swarm(MMRS)for targeted therapy.Our approach overcomes limitations associated with a single MNR,including limited drug loading and the risk of loss during manipulation.We select Zeolitic Imidazolate Framework-8(ZIF-8)as the drug vehicle for its superior loading potential and p H-sensitive decomposition.Our design incorporates magnetic responsive components into the one-pot synthesis of Fe@ZIF-8,enabling collective behaviors under actuation.Tuning the yaw angle of alternating magnetic fields and nanoparticles'amount,the MMRSs with controllable size achieve instantaneous transformation among different configurations,including vortex-like swarms,chain-like swarms,and elliptical swarms,facilitating adaptation to environmental variations.Transported to the subcutaneous T24 tumor site,the MMRSs with encapsulated doxorubicin(DOX)automatically degrade and release the drug,leading to a dramatic reduction of the tumor in vivo.Our investigation signifies a significant advancement in the integration of biodegradable MOFs into microrobot swarms,ushering in new avenues for accurate and non-invasive targeted drug delivery.展开更多
Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body.To reach the lesion area in vivo,microrobots should usually be navigated in flowing blo...Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body.To reach the lesion area in vivo,microrobots should usually be navigated in flowing blood,which is much more complex than static liquid.Therefore,it is more challenging to design a corresponding precise control scheme.A considerable amount of work has been done regarding control of magnetic microrobots in a flow and the corresponding theories.In this paper,we review and summarize the state-of-the-art research progress concerning magnetic microrobots in blood flow,including the establishment of flow systems,dynamics modeling of motion,and control methods.In addition,current challenges and limitations are discussed.We hope this work can shed light on the efficient control of microrobots in complex flow environments and accelerate the study of microrobots for clinical use.展开更多
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies.Immune cell modulation through the administration of drugs,pro...Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies.Immune cell modulation through the administration of drugs,proteins,and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors.Magnetic systems offer several advantages for improving the performance of immunotherapies,including increased spatiotemporal control over transport,release,and dosing of immunomodulatory drugs within the body,resulting in reduced off-target effects and improved efficacy.Compared to alternative methods for stimulating drug release such as light and pH,magnetic systems enable several distinct methods for programming immune responses.First,we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release.Second,we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites.Third,we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs.Fourth,we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity.Finally,we discuss translational considerations of these systems,such as toxicity,clinical compatibility,and future opportunities for improving cancer treatment.展开更多
Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers ...Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.展开更多
A microbionic and peristaltic robot that simulates the motion of an earthworm to move within a micropipe is proposed. The robot consists of three flexible units. Each unit is composed of two plates connected with thre...A microbionic and peristaltic robot that simulates the motion of an earthworm to move within a micropipe is proposed. The robot consists of three flexible units. Each unit is composed of two plates connected with three shape memory alloys (SMA) 120° apart, the rubber gasbag around the SMA wires inflated with air inside. Each unit corresponds to a segment of an earthworm, and the SMA and rubber gasbag have the same functions as the cricoid and longitudinal muscles of the earthworm. A control system is designed to fulfill the control of the three flexible units motions, such as stretching, shrinking and bending, so the microrobot can walk forward and backward, and choose the direction.展开更多
Microrobots-assisted drug delivery and surgery have been always in the spotlight and are highly anticipated to solve the challenges of cancer in situ treatment. These versatile small biomedical robots are expected to ...Microrobots-assisted drug delivery and surgery have been always in the spotlight and are highly anticipated to solve the challenges of cancer in situ treatment. These versatile small biomedical robots are expected to realize direct access to the tumor or disease site for precise treatment, which requires real-time and high-resolution in vivo tracking as feedback for the microrobots’ actuation and control. Among current biomedical imaging methods, photoacoustic imaging(PAI) is presenting its outstanding performances in the tracking of microrobots in the human body derived from its great advantages of excellent imaging resolution and contrast in deep tissue. In this review, we summarize the PAI techniques, imaging systems, and their biomedical applications in microrobots tracking in vitro and in vivo. From a robotic tracking perspective,we also provide some insight into the future of PAI technology in clinical applications.展开更多
基金supported by the National Natural Science Foundation of China(No.81572187,No.81871812 and No.52205590)the Natural Science Foundation of Jiangsu Province(No.BK20220834)+1 种基金project supported by Ruihua Charity Foundation(YL20220525)the Start-up Research Fund of Southeast University(No.RF1028623098).
文摘Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo end-stage surgery.Therefore,future treatments should focus on early detection and intervention of regional lesions.Microrobots have been gradually used in organisms due to their advantages of intelligent,precise and minimally invasive targeted delivery.Through the combination of control and imaging systems,microrobots with good biosafety can be delivered to the desired area for treatment.In the musculoskeletal system,microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body.Compared to traditional biomaterial and tissue engineering strategies,active motion improves the efficiency and penetration of local targeting of cells/drugs.This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system.We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
基金the National Convergence Research of Scientific Challenges through the National Research Foundation of Korea(NRF)the DGIST R&D Program(No.2021M3F7A1082275 and 23-CoE-BT-02)funded by the Ministry of Science and ICT.
文摘Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fuel-free propulsion,favorable biocompatibility,and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media,efficient cargo delivery and favorable biocompatibility.A noteworthy number of degradable metal-based micromotors employ bubble propulsion,utilizing water as fuel to generate hydrogen bubbles.This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications.In addition,understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance.Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor.Here we review the design and recent advancements of metallic degradable micromotors.Furthermore,we describe the controlled degradation,efficient in vivo drug delivery,and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications.Moreover,we discuss micromotors’efficacy in detecting and destroying environmental pollutants.Finally,we address the limitations and future research directions of degradable metallic micromotors.
基金the National Natural Science Foundation of China(No.12072142)the Key Talent Recruitment Program of Guangdong Province(No.2019QN01Z438)+2 种基金the Science Technology and Innovation Commission of Shenzhen Municipality(ZDSYS20210623092005017)the China Postdoctoral Science Foundation(No.2022M721471)the Natural Science Foundation of Guangdong Province under the Grant(No.2022A1515010047)。
文摘Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners.
文摘Since natural orifice transluminal endoscopic surgery(NOTES) was first described by Anthony Kalloo,it has attracted tremendous interest from surgeons and gastroenterologist all around the world.This special issue of the World Journal of Gastrointestinal Surgery explores the current possibilities and future potential of the most disruptive revolution in the field of surgery represented by the NOTES approach.In the future,new technologies developed for this approach and deeper insight into several gastrointestinal diseases will lead to the design of completely new interven tional procedures and change the way we will operate,bringing us to the previously unimaginable goal of "no scar surgery".
基金supported in part by the National Science Foundation(IIS1318638 and IIS1426752)the Shenzhen Science and Technology Project(ZDSY20120617113312191)
文摘This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current(DC) micromotors. The open-loop and closed-loop approaches described here add the capability for net sidewise displacements of the microrobotic platform. A displacement is achieved by the execution of a number of repeating steps that depend on the desired displacement, the speed of the micromotors, and the elapsed time. Simulation and experimental results verified the performance of the proposed methodologies.
文摘In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators. But the microrobot had some problems in walking and floating motions. In this paper, we propose a concept of hybrid microrobot (see Fig. 1). The microrobot is actuated by a pair of caudal fins, a base with legs and an array of artificial swim bladders. We have developed a prototype of the base with legs and one artificial swim bladder, respectively, and carried out experiments for evaluating their characteristics. Experimental results show the base with legs can realize walking speed of 6 mm/s and rotating speed of 7.1 degrees/s respectively, and the prototype of the artificial swim bladder has a maximum floatage of 2.6 mN. The experimental results also indicate that the microrobot has some advantages, such as walking motion with 2 degrees of freedom, the walking ability on rough surface (sand paper), the controllable floatage, etc. This kind of fish-like microrobot is expected for industrial and medical applications.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education Science and Technology(Grant number:2010-0018884)
文摘We have studied a biomimetic swimmer based on the motion of bacteria such as Escherichia coli (E. coli) theoretically andexperimentally. The swimmer has an ellipsoidal cell body propelled by a helical filament. The performance of this swimmer wasestimated by modeling the dynamics of a swimmer in viscous fluid. We applied the Resistive Force Theory (RFT) on this modelto calculate the linear swimming speed and the efficiency of the model. A parametric study on linear velocity and efficiency tooptimize the design of this swimmer was demonstrated. In order to validate the theoretical results, a biomimetic swimmer wasfabricated and an experiment setup was prepared to measure the swimming speed and thrust force in silicone oil. The experimentalresults agree well with the theoretical values predicted by RFT. In addition, we studied the flow patterns surrounding thefilament with a finite element simulation with different Reynolds number (Re) to understand the mechanism of propulsion. Thesimulation results provide information on the nature of flow patterns generated by swimming filament. Furthermore, the thrustforces from the simulation were compared with the thrust forces from theory. The simulation results are in good agreement withthe theoretical results.
文摘It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.
基金the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)the Natural Science Foundation of Hunan through Grant No.2020JJ3012。
文摘Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hydrogel based on N-isopropylacrylamide that achieved a fast and reversible deformation manipulated only by near-infrared(NIR)light.The hydrogel was fabricated by the projection micro stereolithography based 3D printing technique,which can rapidly prototype complex 3D structures.Furthermore,with the variation of the grayscale while manufacturing the hydrogel,the deformation of the hydrogel structure can be freely tuned within a few seconds by losing and absorbing water through adjusting the intensity and the irradiation direction of the NIR light,showing a potential application in ultra-fast object grabbing and transportation.The present study provides a new method for designing ultrafast photothermal responsive hydrogel based microrobot working in water.
基金the the National High-Tech R&D Program(863-5 12-9804-18)
文摘This paper describes a novel design for the carrier mechanism of a pipe-inspection micro robot Based on this mechanism, a new micro robot for the pipes with diameter of 20mm has been developed. It can travel through both vertical pipes and curved pipes to make possible inspection that would be difficult with conventional endoscopes. This mechanism is composed of three units, two novel micro mechanisms called as a planetary wheel mechanism for robot drive, two micro electromagnetic motors and a flexible coupler.
基金Supported by the National High Technology Research and Development Programme of China(No.2007AA04Z340)
文摘A simple autonomous docking method based on infrared sensors for mobile self-reconfigurable relay microrobots is proposed in the paper.The IR guidance system composed of an IR receiver and four IR emitters is designed,analyzed and developed.The autonomous docking control method based on centering alignment and dynamic motion planning is adopted so that it has high efficiency and reliability.Two basic microrobot prototypes are developed,and related docking experiments are done to verify the feasibility of the approach.
基金AIDS Association of Inner Mongolia University for Nationalities,No.IMUN20190908.
文摘High genetic variability of human immunodeficiency virus(HIV)has been a major intractable challenge to the practical design of vaccines.But a recent pioneer study published in PNAS Xenobots,is likely to revolutionize HIV prevention as it presented the world's first living robot made of cells.In the advent of this discovery,we herein discuss the possibility of using living biological cell robots to target HIV-infected T lymphocytes,and the prospects of this approach being a new HIV vaccine.We capture the current research status and trend of advances in biological cell robots'design as a new HIV vaccine.The key differences between this novel vaccine and other HIV vaccines are highlighted.
基金supported by the Shanghai professional technology service platform under Grant 19DZ2291103.
文摘Inspired by the fast,agile movements of insects,we present a 1.9 g,4.5 cm in length,piezoelectrically driven,quadrupedal microrobot.This microrobot uses a novel spatial parallel mechanism as its hip joint,which consists of two spatially orthogonal slider-crank linkages.This mechanism maps two inputs of two independent actuators to the decoupled swing and lift outputs of a leg,and each leg can produce the closed trajectories in the sagittal plane necessary for robot motion.Moreover,the kinematics of the transmission are analyzed,and the parameters of the flexure hinges are designed based on geometrical constraints and yield conditions.The hip joints,legs and exoskeletons are integrated into a five-layer standard laminate for monolithic fabrication which is composed of two layers of carbon fiber,two layers of acrylic adhesive and a polyimide film.The measured output force(15.97 mN)of each leg is enough to carry half of the robot’s weight,which is necessary for the robot to move successfully.It has been proven that the robot can successfully perform forward and turning motions.Compared to the microrobot fabricated with discrete components,the monolithically fabricated microrobot is more capable of maintaining the original direction of locomotion when driven by a forward signal and has a greater speed,whose maximum speed is 25.05 cm/s.
基金supported by the National Natural Science Foundation of China(No.3190110313 to K.Ma)Special Foundation of President of the Chinese Academy of Sciences(No.YZJJ2022QN_(4)4)+2 种基金HFIPS Director’s Fund(Nos.E16CWK123X1YZJJQY202201)the Heye Health Technology Chong Ming Project(No.HYCMP-2022012 to Y.Wang)。
文摘For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,classified as anaerobic,aquatic,and gram-negative microorganisms,exhibit remarkable motility and precise control over their internal biomineralization processes.This unique ability results in the formation of magnetic nanoparticles arranged along filamentous structures in a catenary fashion,enclosed within a membrane.These bacteria possess distinctive biochemical properties that facilitate their precise positioning within complex environments.By harnessing these biochemical attributes,MTB could potentially offer substantial advantages in the realm of cancer therapy.This article reviews the drug delivery capabilities of MTB in tumor treatment and explores various applications based on their inherent properties.The objective is to provide a comprehensive understanding of MTB-driven drug delivery and stimulate innovative insights in this field.
基金supported by the National Natural Science Foundation of China(22275073,22005119,21731002,2197510422150004)the Guangdong Major Project of Basic and Applied Research(2019B030302009)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2020A1515110404)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J3597,202102020444)the Fundamental Research Funds for the Central Universities(21622409)。
文摘Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/nano-robots(MNRs)offer distinct advantages,such as untethered and precise manipulation.The fusion of these technologies presents a promising avenue for achieving non-invasive targeted drug delivery.Here,we report a MOF-based magnetic microrobot swarm(MMRS)for targeted therapy.Our approach overcomes limitations associated with a single MNR,including limited drug loading and the risk of loss during manipulation.We select Zeolitic Imidazolate Framework-8(ZIF-8)as the drug vehicle for its superior loading potential and p H-sensitive decomposition.Our design incorporates magnetic responsive components into the one-pot synthesis of Fe@ZIF-8,enabling collective behaviors under actuation.Tuning the yaw angle of alternating magnetic fields and nanoparticles'amount,the MMRSs with controllable size achieve instantaneous transformation among different configurations,including vortex-like swarms,chain-like swarms,and elliptical swarms,facilitating adaptation to environmental variations.Transported to the subcutaneous T24 tumor site,the MMRSs with encapsulated doxorubicin(DOX)automatically degrade and release the drug,leading to a dramatic reduction of the tumor in vivo.Our investigation signifies a significant advancement in the integration of biodegradable MOFs into microrobot swarms,ushering in new avenues for accurate and non-invasive targeted drug delivery.
基金supported by the Shenzhen Institute of Artificial Intelligence and Robotics for Society,China (No.AC01202101106)。
文摘Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body.To reach the lesion area in vivo,microrobots should usually be navigated in flowing blood,which is much more complex than static liquid.Therefore,it is more challenging to design a corresponding precise control scheme.A considerable amount of work has been done regarding control of magnetic microrobots in a flow and the corresponding theories.In this paper,we review and summarize the state-of-the-art research progress concerning magnetic microrobots in blood flow,including the establishment of flow systems,dynamics modeling of motion,and control methods.In addition,current challenges and limitations are discussed.We hope this work can shed light on the efficient control of microrobots in complex flow environments and accelerate the study of microrobots for clinical use.
文摘Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies.Immune cell modulation through the administration of drugs,proteins,and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors.Magnetic systems offer several advantages for improving the performance of immunotherapies,including increased spatiotemporal control over transport,release,and dosing of immunomodulatory drugs within the body,resulting in reduced off-target effects and improved efficacy.Compared to alternative methods for stimulating drug release such as light and pH,magnetic systems enable several distinct methods for programming immune responses.First,we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release.Second,we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites.Third,we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs.Fourth,we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity.Finally,we discuss translational considerations of these systems,such as toxicity,clinical compatibility,and future opportunities for improving cancer treatment.
基金This work was funded by National Science Foundation (DMR 1306794), Korea Institute of Science Technology (K-GRL program), Army Research Office (W911NF- 11-1-0490), and Ministry of Trade, Industry, and Energy (MOTIE) (NO. 10052980) awards to Min Jun Kim.
文摘Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
文摘A microbionic and peristaltic robot that simulates the motion of an earthworm to move within a micropipe is proposed. The robot consists of three flexible units. Each unit is composed of two plates connected with three shape memory alloys (SMA) 120° apart, the rubber gasbag around the SMA wires inflated with air inside. Each unit corresponds to a segment of an earthworm, and the SMA and rubber gasbag have the same functions as the cricoid and longitudinal muscles of the earthworm. A control system is designed to fulfill the control of the three flexible units motions, such as stretching, shrinking and bending, so the microrobot can walk forward and backward, and choose the direction.
基金This work was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region(Nos.11103320,11215817,and 11101618)。
文摘Microrobots-assisted drug delivery and surgery have been always in the spotlight and are highly anticipated to solve the challenges of cancer in situ treatment. These versatile small biomedical robots are expected to realize direct access to the tumor or disease site for precise treatment, which requires real-time and high-resolution in vivo tracking as feedback for the microrobots’ actuation and control. Among current biomedical imaging methods, photoacoustic imaging(PAI) is presenting its outstanding performances in the tracking of microrobots in the human body derived from its great advantages of excellent imaging resolution and contrast in deep tissue. In this review, we summarize the PAI techniques, imaging systems, and their biomedical applications in microrobots tracking in vitro and in vivo. From a robotic tracking perspective,we also provide some insight into the future of PAI technology in clinical applications.