期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CP-DeepLabv3+的玉米根系图像分割
1
作者 赵亚凤 王孟雪 +3 位作者 王德帅 王冬冬 李园 胡峻峰 《中国农业科技导报》 CAS CSCD 北大核心 2024年第3期110-116,共7页
利用微根管技术可以直接监测植物根系动态生长,并获取清晰根系图像,但土壤环境复杂、颗粒不均匀、细根数量多,图像分割时容易造成根系不连续,将土壤背景误认为根系。针对以上问题,提出了CP-DeepLabv3+算法进行图像分割。该算法引入坐标... 利用微根管技术可以直接监测植物根系动态生长,并获取清晰根系图像,但土壤环境复杂、颗粒不均匀、细根数量多,图像分割时容易造成根系不连续,将土壤背景误认为根系。针对以上问题,提出了CP-DeepLabv3+算法进行图像分割。该算法引入坐标注意力机制(coordinate attention, CA),更精确地获得分割目标信息,使得分割目标边缘更加连续;在ASPP特征提取模块加入条纹池化(strip pooling,SP)分支,避免在相距较远的位置之间建立不必要的连接,提高图像分割精度。利用CP-DeepLabv3+算法对玉米根系数据集进行测试,结果显示,平均交并比(mean intersection over union,MIoU)值为82.95%,平均像素精确度(mean pixel accuracy,MPA)值为92.47%,相比于原始DeepLabv3+模型分别提高了3.69%、4.44%,表明该算法可有效分割玉米根系,对图像特征提取具有实际意义。 展开更多
关键词 玉米根系 微根管法 原位监测 CP-DeepLabv3+
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部