Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the ai...Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the aid of a deep learning algorithm,a new method for the prediction of M-A-E data is proposed.In this method,an M-A-E data prediction model is built based on a variety of neural networks after analyzing numerous M-A-E data,and then the M-A-E data can be predicted.The predicted results are highly correlated with the real data collected in the field.Through field verification,the deep learning-based prediction method of M-A-E data provides quantitative prediction data for rockburst monitoring.展开更多
There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis.To understand the spatial and temporal evolution of this microseismi...There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis.To understand the spatial and temporal evolution of this microseismicity,we built a high-precision earthquake catalog for 2014 and relocated 2275 events using recently developed methods for event picking and catalog construction.Seismicity occurred in the southeastern part of the reservoir,with the preferred fault plane orientation aligned along the Heyuan Fault.The total seismic energy peaked when the typhoon passed through the reservoir,and seismicity correlated with typhoon energy.In contrast,a limited seismic response was observed during the later Typhoon Rammasun.Combining data regarding the water level in the Xinfengjiang Reservoir and seismicity frequency changes in the Taiwan region during these two typhoon events,we suggest that typhoon activity may increase microseism energy by impacting fault stability around the Xinfengjiang Reservoir.Whether a fault can be activated also depends on how close the stress accumulation is to its failure point.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
A wet-chemical method was presented for preparation of spherical, flowerlike, hexagonal, and triangular microsized silver crystals. Well-defined particles were prepared by mixing of iron(II) sulfate heptahydrate sol...A wet-chemical method was presented for preparation of spherical, flowerlike, hexagonal, and triangular microsized silver crystals. Well-defined particles were prepared by mixing of iron(II) sulfate heptahydrate solution with silver nitrate solution at the presence of different modifiers with high-speed stirring at 8-20℃. It is found that the diameters of resulting products are 0.6-6.0 um and the morphologies of the silver microcrystals are greatly affected by the introduced modifiers. It is concluded that the microsized silver crystals with different morphologies can be synthesized by introducing appropriate modifiers at appropriate experimental parameters. Scanning electron microscopy and X-ray diffraction were used to characterize the resulting products.展开更多
In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland...In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland stations, we discussed some methods to distinguish different kinds of microseisms, and speculated that a pre-earthquake typhoon might have caused a "mainland-originated microseism" which in turn trig- gered the earthquake.展开更多
Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslide...Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslides on such debris slopes.In this study,a cumulative damage model of debris slope with varying slope characteristics under the effects of frequent microseisms was established,based on the accurate definition of slope damage variables.The cumulative damage behaviour and the mechanisms of slope instability and sliding under frequent microseisms were thus systematically investigated through a series of shaking table tests and discrete element numerical simulations,and the influences of related parameters such as bedrock,dry density and stone content were discussed.The results showed that the instability mode of a debris slope can be divided into a vibration-compaction stage,a crack generation stage,a crack development stage,and an instability stage.Under the action of frequent microseisms,debris slope undergoes the last three stages cyclically,which causes the accumulation to slide out in layers under the synergistic action of tension and shear,causing the slope to become destabilised.There are two sliding surfaces as well as the parallel tensile surfaces in the final instability of the debris slope.In the process of instability,the development trend of the damage accumulation curve remains similar for debris slopes with different parameters.However,the initial vibration compaction effect in the bedrock-free model is stronger than that in the bedrock model,with the overall cumulative damage degree in the former being lower than that of the latter.The damage degree of the debris slope with high dry density also develops more slowly than that of the debris slope with low dry density.The damage development rate of the debris slope does not always decrease with the increase of stone content.The damage degree growth rate of the debris slope with the optimal stone content is the lowest,and the increase or decrease of the stone content makes the debris slope instability happen earlier.The numerical simulation study also further reveals that the damage in the debris slope mainly develops in the form of crack formation and penetration,in which,shear failure occurs more frequently in the debris slope.展开更多
We present second-order expressions for the free-surface elevation, velocity potential and pressure resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have nearly equal...We present second-order expressions for the free-surface elevation, velocity potential and pressure resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have nearly equal frequencies and nearly opposite directions, a second-order pressure can be felt all the way to the sea bottom. There are at least two areas of applications: reflective structures and microseisms. Microseisms generated by water waves in the ocean are small vibrations of the ground resulting from pressure oscillations associated with the coupling of ocean surface gravity waves and the sea floor. They are recorded on land-based seismic stations throughout the world and they are divided into primary and secondary types, as a function of spectral content. Secondary microseisms are generated by the interaction of surface waves with nearly equal frequencies and nearly opposite directions. The efficiency of microseism generation thus depends in part on ocean wave frequency and direction. Based on the second-order expressions for the dynamic pressure, a simple theoretical analysis that quantifies the degree of nearness in amplitude, frequency, and incidence angle, which must be reached to observe the phenomenon, is presented.展开更多
Based on repeated comparison studies of broadband digital seismic records before the Wenchuan MS8. 0,Yushu MS7. 1 and Qingchuan MS5. 4 earthquakes,the possible microseismic fluctuations before impending earthquakes we...Based on repeated comparison studies of broadband digital seismic records before the Wenchuan MS8. 0,Yushu MS7. 1 and Qingchuan MS5. 4 earthquakes,the possible microseismic fluctuations before impending earthquakes were preliminarily identified. In order to verify and test this phenomenon,a real-time tracking technical system was established by using continuous waveform records of more than 200 wide-band digital seismic stations in regional networks such as Gansu,Qinghai,Sichuan,Yunnan and Tibet.Through real-time tracking and dynamic monitoring of 24 earthquakes with M≥5. 0 occurring in the Qinghai-Tibetan block during the period of 2012-2014 and the observations of stations in some non-seismic areas,the reproducibility and objectivity of the impending earthquake phenomenon were verified. The main characteristics of the microseismic fluctuation phenomena immediately preceding the strong earthquakes are as follows:(1)the spectrum range is wider,the dominant frequency is 11-16 Hz,and the spectrum shape is more regular;(2)it appears 6-24 days before the earthquake,averaging about 15 days;(3)it is possible to be recorded by the stations within the epicenter distance of 50 km,and the stations with the epicenter distance of more than 50 km generally cannot record it;(4)this phenomenon is directional,i. e. the direction in which the activity degree,N-value,varies significantly may be related to the location of the seismic source,the seismogenic fault and the distribution of aftershocks of the strong earthquake. The preliminary study shows that the impending-earthquakes microseismic phenomena may be related to the pre-activity,micro-vibration and micro-rupture in the source region in the imminent stage,or the microactivity and micro-rupture associated with the active tectonics.展开更多
The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divi...The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.展开更多
The temporal and spatial distributions of Antarctic sea ice play important roles in both the generation mechanisms and the signal characteristics of microseisms. This link paves the way for seismological investigation...The temporal and spatial distributions of Antarctic sea ice play important roles in both the generation mechanisms and the signal characteristics of microseisms. This link paves the way for seismological investigations of Antarctic sea ice. Here we present an overview of the current state of seismological research about microseisms on Antarctic sea ice. We first briefly review satellite remote-sensing observations of Antarctic sea ice over the past 50 years. We then systematically expound upon the generation mechanisms and source distribution of microseisms in relation to seismic noise investigations of sea ice, and the characteristics of Antarctic microseisms and relationship with sea ice variations are further analyzed. We also analyze the continuous data recorded at seismic station BEAR in West Antarctica from 2011 to 2018 and compare the microseism observations with the corresponding satellite remotesensing observations of Antarctic sea ice. Our results show that:(1) the microseisms from the coastal regions of West Antarctica exhibit clear seasonal variations,SFM with maximum intensities every April-May and minimum intensities around every October-November;while DFM intensities peak every February-March,and reach the minimum around every October. Comparatively,the strong seasonal periodicity of Antarctic sea ice in better agreement with the observed DFM;and(2) microseism decay is not synchronous with sea ice expansion since the microseism intensity is also linked to the source location,source intensity(e. g.,ocean storms,ocean wave field),and other factors. Finally, we discuss the effect of Southern Annular Mode on Antarctic sea ice and microseisms,as well as the current limitations and potential of employing seismological investigations to elucidate Antarctic sea ice variations and climate change.展开更多
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac...Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51934007)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220691).
文摘Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the aid of a deep learning algorithm,a new method for the prediction of M-A-E data is proposed.In this method,an M-A-E data prediction model is built based on a variety of neural networks after analyzing numerous M-A-E data,and then the M-A-E data can be predicted.The predicted results are highly correlated with the real data collected in the field.Through field verification,the deep learning-based prediction method of M-A-E data provides quantitative prediction data for rockburst monitoring.
基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(No.XDB42020304)National Natural Science Foundation of China(No.42074059).
文摘There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis.To understand the spatial and temporal evolution of this microseismicity,we built a high-precision earthquake catalog for 2014 and relocated 2275 events using recently developed methods for event picking and catalog construction.Seismicity occurred in the southeastern part of the reservoir,with the preferred fault plane orientation aligned along the Heyuan Fault.The total seismic energy peaked when the typhoon passed through the reservoir,and seismicity correlated with typhoon energy.In contrast,a limited seismic response was observed during the later Typhoon Rammasun.Combining data regarding the water level in the Xinfengjiang Reservoir and seismicity frequency changes in the Taiwan region during these two typhoon events,we suggest that typhoon activity may increase microseism energy by impacting fault stability around the Xinfengjiang Reservoir.Whether a fault can be activated also depends on how close the stress accumulation is to its failure point.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
文摘A wet-chemical method was presented for preparation of spherical, flowerlike, hexagonal, and triangular microsized silver crystals. Well-defined particles were prepared by mixing of iron(II) sulfate heptahydrate solution with silver nitrate solution at the presence of different modifiers with high-speed stirring at 8-20℃. It is found that the diameters of resulting products are 0.6-6.0 um and the morphologies of the silver microcrystals are greatly affected by the introduced modifiers. It is concluded that the microsized silver crystals with different morphologies can be synthesized by introducing appropriate modifiers at appropriate experimental parameters. Scanning electron microscopy and X-ray diffraction were used to characterize the resulting products.
基金supported by the National Natural Science Foundation of China(90814009)Quality Control’s Special Funds for Scientific Researchon Public Causes(10-215)National Key Technology Research and Development Program(2008BAC35B05)
文摘In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland stations, we discussed some methods to distinguish different kinds of microseisms, and speculated that a pre-earthquake typhoon might have caused a "mainland-originated microseism" which in turn trig- gered the earthquake.
基金funded by the Natural Science Foundation of Chongqing municipality(Grant No.CSTC2021JCYJMSXMX0558)the National Key R&D Program of China(Grant No.2018YFC1504802)the Fundamental Research Funds for the Central Universities(Project No.2019CDCG0013)。
文摘Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslides on such debris slopes.In this study,a cumulative damage model of debris slope with varying slope characteristics under the effects of frequent microseisms was established,based on the accurate definition of slope damage variables.The cumulative damage behaviour and the mechanisms of slope instability and sliding under frequent microseisms were thus systematically investigated through a series of shaking table tests and discrete element numerical simulations,and the influences of related parameters such as bedrock,dry density and stone content were discussed.The results showed that the instability mode of a debris slope can be divided into a vibration-compaction stage,a crack generation stage,a crack development stage,and an instability stage.Under the action of frequent microseisms,debris slope undergoes the last three stages cyclically,which causes the accumulation to slide out in layers under the synergistic action of tension and shear,causing the slope to become destabilised.There are two sliding surfaces as well as the parallel tensile surfaces in the final instability of the debris slope.In the process of instability,the development trend of the damage accumulation curve remains similar for debris slopes with different parameters.However,the initial vibration compaction effect in the bedrock-free model is stronger than that in the bedrock model,with the overall cumulative damage degree in the former being lower than that of the latter.The damage degree of the debris slope with high dry density also develops more slowly than that of the debris slope with low dry density.The damage development rate of the debris slope does not always decrease with the increase of stone content.The damage degree growth rate of the debris slope with the optimal stone content is the lowest,and the increase or decrease of the stone content makes the debris slope instability happen earlier.The numerical simulation study also further reveals that the damage in the debris slope mainly develops in the form of crack formation and penetration,in which,shear failure occurs more frequently in the debris slope.
基金partly supported by the Science Foundation Ireland(SFI)under the research project "High-end computational modeling for wave energy systems"(SFI/10/IN.1/12996)in collaboration with Marine Renewable Energy Ireland(MaREI)the SFI Centre for Marine Renewable Energy Research(SFI/12/RC/2302)
文摘We present second-order expressions for the free-surface elevation, velocity potential and pressure resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have nearly equal frequencies and nearly opposite directions, a second-order pressure can be felt all the way to the sea bottom. There are at least two areas of applications: reflective structures and microseisms. Microseisms generated by water waves in the ocean are small vibrations of the ground resulting from pressure oscillations associated with the coupling of ocean surface gravity waves and the sea floor. They are recorded on land-based seismic stations throughout the world and they are divided into primary and secondary types, as a function of spectral content. Secondary microseisms are generated by the interaction of surface waves with nearly equal frequencies and nearly opposite directions. The efficiency of microseism generation thus depends in part on ocean wave frequency and direction. Based on the second-order expressions for the dynamic pressure, a simple theoretical analysis that quantifies the degree of nearness in amplitude, frequency, and incidence angle, which must be reached to observe the phenomenon, is presented.
基金sponsored by Application of Digital Seismic Technology in Short-and Medium-term Prediction of Strong Earthquakes:a Special Topic of the Twelfth “Five-year Plan” Chinese Science and Technology Support Plan(2012BAK19B02-01)
文摘Based on repeated comparison studies of broadband digital seismic records before the Wenchuan MS8. 0,Yushu MS7. 1 and Qingchuan MS5. 4 earthquakes,the possible microseismic fluctuations before impending earthquakes were preliminarily identified. In order to verify and test this phenomenon,a real-time tracking technical system was established by using continuous waveform records of more than 200 wide-band digital seismic stations in regional networks such as Gansu,Qinghai,Sichuan,Yunnan and Tibet.Through real-time tracking and dynamic monitoring of 24 earthquakes with M≥5. 0 occurring in the Qinghai-Tibetan block during the period of 2012-2014 and the observations of stations in some non-seismic areas,the reproducibility and objectivity of the impending earthquake phenomenon were verified. The main characteristics of the microseismic fluctuation phenomena immediately preceding the strong earthquakes are as follows:(1)the spectrum range is wider,the dominant frequency is 11-16 Hz,and the spectrum shape is more regular;(2)it appears 6-24 days before the earthquake,averaging about 15 days;(3)it is possible to be recorded by the stations within the epicenter distance of 50 km,and the stations with the epicenter distance of more than 50 km generally cannot record it;(4)this phenomenon is directional,i. e. the direction in which the activity degree,N-value,varies significantly may be related to the location of the seismic source,the seismogenic fault and the distribution of aftershocks of the strong earthquake. The preliminary study shows that the impending-earthquakes microseismic phenomena may be related to the pre-activity,micro-vibration and micro-rupture in the source region in the imminent stage,or the microactivity and micro-rupture associated with the active tectonics.
基金Project(2013AA064003)supported by the National Technology Research and Development Program of ChinaProject(51564033)supported by the National Natural Science Foundation of ChinaProject(2016FA023)supported by the Yunnan Applied Basic Research(CNMRCUXT1403)State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,China
文摘The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.
基金sponsored by the National Key R&D Program of China(2018YFC1503204)the National Natural Science Foundation of China(41874046)。
文摘The temporal and spatial distributions of Antarctic sea ice play important roles in both the generation mechanisms and the signal characteristics of microseisms. This link paves the way for seismological investigations of Antarctic sea ice. Here we present an overview of the current state of seismological research about microseisms on Antarctic sea ice. We first briefly review satellite remote-sensing observations of Antarctic sea ice over the past 50 years. We then systematically expound upon the generation mechanisms and source distribution of microseisms in relation to seismic noise investigations of sea ice, and the characteristics of Antarctic microseisms and relationship with sea ice variations are further analyzed. We also analyze the continuous data recorded at seismic station BEAR in West Antarctica from 2011 to 2018 and compare the microseism observations with the corresponding satellite remotesensing observations of Antarctic sea ice. Our results show that:(1) the microseisms from the coastal regions of West Antarctica exhibit clear seasonal variations,SFM with maximum intensities every April-May and minimum intensities around every October-November;while DFM intensities peak every February-March,and reach the minimum around every October. Comparatively,the strong seasonal periodicity of Antarctic sea ice in better agreement with the observed DFM;and(2) microseism decay is not synchronous with sea ice expansion since the microseism intensity is also linked to the source location,source intensity(e. g.,ocean storms,ocean wave field),and other factors. Finally, we discuss the effect of Southern Annular Mode on Antarctic sea ice and microseisms,as well as the current limitations and potential of employing seismological investigations to elucidate Antarctic sea ice variations and climate change.
基金financially supported by Projects of the National Key Technology R&D Program of China(Nos.2013BAB02B01 and2013BAB02B03)the National Natural Science Foundation of China(Nos.51274055 and 51204030)+1 种基金the Fundamental Research Funds for the Central University of China(Nos.N130401006,N120801002 and N120701001)the Key Science&Technology Special Project of Third Five-Year Plan of MCC(No.0012012009)
文摘Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass.