A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition.The reason is well known that t...A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition.The reason is well known that the microstructure is different from specimen to specimen even in the same group.Specifically,a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account.A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro-and macro-scale.Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density(SED)factor.By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro-to macro-scale,a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process.The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model.Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected.The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model.It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process.The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.展开更多
Ion photon emission microscopy (IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an...Ion photon emission microscopy (IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an optical system with objective lens, prism, microscope tube and charge coupled device (CCD). A thin ZnS film doped with Ag ions is used as a luminescent material. Generation efficiency and transmission efficiency of photons in the ZnS(Ag) film created by irradiated Cl ions are calculated. A single Cl ion optical microscopic image is observed by high quantum efficiency CCD. The resolution of a single Cl ion given in this IPEM system is 6μm. Several factors influencing the resolution are discussed. A silicon diode is used to collect the electrical signals caused by the incident ions. Effective and accidental coincidence of optical images and electronic signals are illustrated. A two-dimensional map of single event effect is drawn out according to the data of effective coincidence.展开更多
The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addit...The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addition of Ti-C on the c-axis orientation and the magnetization process of hot-rolled Nd-Fe-B-Ti-C melt-spun ribbons. The addition of Ti-C promotes the c-axis orientation and high coercivity in the ribbons. Elemental mapping suggests a uniform elemental distribution; however, an uneven distribution of Ti was observed in an enlarged grain with Ti-enriched points inside the grain. The reversal domains that nucleated at the Ti-enriched point inside the grain cause low coercivity.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51378081)
文摘A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition.The reason is well known that the microstructure is different from specimen to specimen even in the same group.Specifically,a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account.A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro-and macro-scale.Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density(SED)factor.By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro-to macro-scale,a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process.The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model.Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected.The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model.It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process.The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.
基金Supported by the National Natural Science Foundation of China under Grant No 11690044
文摘Ion photon emission microscopy (IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an optical system with objective lens, prism, microscope tube and charge coupled device (CCD). A thin ZnS film doped with Ag ions is used as a luminescent material. Generation efficiency and transmission efficiency of photons in the ZnS(Ag) film created by irradiated Cl ions are calculated. A single Cl ion optical microscopic image is observed by high quantum efficiency CCD. The resolution of a single Cl ion given in this IPEM system is 6μm. Several factors influencing the resolution are discussed. A silicon diode is used to collect the electrical signals caused by the incident ions. Effective and accidental coincidence of optical images and electronic signals are illustrated. A two-dimensional map of single event effect is drawn out according to the data of effective coincidence.
文摘The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addition of Ti-C on the c-axis orientation and the magnetization process of hot-rolled Nd-Fe-B-Ti-C melt-spun ribbons. The addition of Ti-C promotes the c-axis orientation and high coercivity in the ribbons. Elemental mapping suggests a uniform elemental distribution; however, an uneven distribution of Ti was observed in an enlarged grain with Ti-enriched points inside the grain. The reversal domains that nucleated at the Ti-enriched point inside the grain cause low coercivity.