Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magneti...Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established.展开更多
The precipitation processes of γ′ and θ phases in Ni75Al6.5V18.5 alloy were simulated at different temperatures and the precipitation sequence of two phases and morphological evolution were investigated. The simula...The precipitation processes of γ′ and θ phases in Ni75Al6.5V18.5 alloy were simulated at different temperatures and the precipitation sequence of two phases and morphological evolution were investigated. The simulation demonstrates that the two phases precipitate simultaneously at high temperature and γ′ phase precipitates earlier than θ phase at 1 000 K and 1 120 K. With the temperature decreasing, the velocity of precipitation quickens, the quantity of θ phase increases and the size reduces; but the volume fraction increases, the quantity of phase increases and the size reduces as well. The two phases nucleate and grow independently at high temperature and the θ phase precipitates from the boundaries of γ′ phase at 1 000 K and 1 120 K. We also find that there are many kinds of domain boundaries between the same and different phases. The results of average deviation of composition and average absolute long range order parameter show that the ordering and compositional clustering of γ′ phase happen simultaneously at high temperature, the congruent ordering occurs prior to spinodal decomposition at 1 000 K and 1 120 K and the ordering advances and quickens as the temperature decreases. Ordering and compositional clustering of θ phase occur simultaneously at each temperature and are quickened with temperature decreasing.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
基金Supported by the Petro China-Southwest Petroleum University Innovation Consortium Project(2020CX020104)Higher Education Innovative Talents Program(Plan 111)(D18016)Sichuan Collaborative Innovation Center for Shale Gas Resources and Environment SEC-2018-03)。
文摘Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established.
基金Project(50071046) supported by the National Natural Science Foundation of China Project(2002AA331051)supportedby Hi tech Research and Development Program of China
文摘The precipitation processes of γ′ and θ phases in Ni75Al6.5V18.5 alloy were simulated at different temperatures and the precipitation sequence of two phases and morphological evolution were investigated. The simulation demonstrates that the two phases precipitate simultaneously at high temperature and γ′ phase precipitates earlier than θ phase at 1 000 K and 1 120 K. With the temperature decreasing, the velocity of precipitation quickens, the quantity of θ phase increases and the size reduces; but the volume fraction increases, the quantity of phase increases and the size reduces as well. The two phases nucleate and grow independently at high temperature and the θ phase precipitates from the boundaries of γ′ phase at 1 000 K and 1 120 K. We also find that there are many kinds of domain boundaries between the same and different phases. The results of average deviation of composition and average absolute long range order parameter show that the ordering and compositional clustering of γ′ phase happen simultaneously at high temperature, the congruent ordering occurs prior to spinodal decomposition at 1 000 K and 1 120 K and the ordering advances and quickens as the temperature decreases. Ordering and compositional clustering of θ phase occur simultaneously at each temperature and are quickened with temperature decreasing.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.