The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and oc...The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory (MicST), a further improved version of free dendritic growth model for pure materials was propos...Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory (MicST), a further improved version of free dendritic growth model for pure materials was proposed. Model comparison indicates that there is a higher temperature at the tip of dendrite predicted by the present model compared with the corresponding model with the isothermal solid/liquid interface assumption. This is attributed to the sidewise thermal diffusion, i.e. the gradient of temperature along the nonisothermal interface. Furthermore, it is indicated that the distinction between the stability criteria from MicST and marginal stability theory (MarST) is more significant with the increase of bath undercoolings. Model test also indicates that the present model can give an agreement with the available experimental data. It is finally concluded that the nonisothermal nature of the solid/liquid interface and the stability criterion from MicST should be taken into account in modeling free dendritic growth.展开更多
The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-b...The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.展开更多
The parameters of the sdg interacting boson model Hamiltonian are calculated for the <sup>104-110</sup>Pdisotopes.The calculations utilize the microscopic procedure based on the Dyson boson mapping propose...The parameters of the sdg interacting boson model Hamiltonian are calculated for the <sup>104-110</sup>Pdisotopes.The calculations utilize the microscopic procedure based on the Dyson boson mapping proposedby Yang-Liu-Qi and extended to include the g boson effects.The calculated parameters reproduce thosevalues from the phenomenological fits.The resulting spectra are compared with the experimental spectra.展开更多
Traffic simulation models have the potential to provide an objective, cost-effective and flexible approach to assessing system design, traffic operations and management strategies. In that regard, the calibration and ...Traffic simulation models have the potential to provide an objective, cost-effective and flexible approach to assessing system design, traffic operations and management strategies. In that regard, the calibration and validation of simulation model is crucial for appropriate decision making process. This paper presents an application of microscopic simulation model calibration and validation procedure for a multimodal urban traffic network. Model is developed by VISSIM and VISSIG software tools.展开更多
The influence of temperature on the precipitation mechanism and sequence of L 12 and D022 phases during the early precipitation process of a Ni-15.Sat%Cr-14at%Al alloy was simulated based on the microscopic phase-fiel...The influence of temperature on the precipitation mechanism and sequence of L 12 and D022 phases during the early precipitation process of a Ni-15.Sat%Cr-14at%Al alloy was simulated based on the microscopic phase-field model. In the range from 873 to 1373 K, the precipitation mechanism transformed from spinodal decomposition to non-classic nucleation and growth; the incubation period prolonged gradually with increasing temperature. The volume fraction of L12 phases increased and that of D022 phases decreased. D022 phases disappeared at 1373 K, and finally single-phase L12 phases were formed.展开更多
Simulations are performed on temporal evolution of atom morphology and ordering parameters of Ni-14.5 Cr-16.5 Al alloy during early precipitation process at different temperatures based on microscopic phase-field theo...Simulations are performed on temporal evolution of atom morphology and ordering parameters of Ni-14.5 Cr-16.5 Al alloy during early precipitation process at different temperatures based on microscopic phase-field theory; the relationship between precipitation sequence and mechanism of L12 and D022 structure and precipitation temperature are illuminated. The nonstoichiometric ordered L12 phases appear first with congruent ordering+spinodal decomposition mechanism which is then followed by precipitation of D022 phases at ordering domain boundaries of L12 phases by spinodal decomposition mechanism at 1073 K and 1223 K. The nonstoichiometric L12 phases transform to stoichiometric ordering phases gradually. The incubation period of L12 and D022 phases is shorter at 1073 K than that 1223 K, and growth speed is higher at 1073 K. At 1373 K, L12 and D022 phases appear simultaneously by non-classical nucleation and growth mechanism. After that the particles of D022 phases diminish and disappear gradually; L12 phases grow and single L12 phases are remained at last.展开更多
The research activities of the calculation of the elastic constants of metal are mainly focused on the elastic constants of crystal at the micro level. To the calculation of the macroscopic elastic constants of metal,...The research activities of the calculation of the elastic constants of metal are mainly focused on the elastic constants of crystal at the micro level. To the calculation of the macroscopic elastic constants of metal, although molecular dynamics method and quasicontinuum method can be used, but there are shortcomings in them, such as a large amount of computation and that the spatial scale of the study model is limited. Therefore, with a pure metal thin plate composed of a single layer of microscopic particles as research object, a new mechanical model is established after the interactions between microscopic particles of the thin plate are applied on the continuum mechanics model of the thin plate. According to this model, the calculation formulas for the microscopic elastic constants, which are the elastic constants of any triangle region in the model, are obtained. After the concept of the ideal micro structure is presented, the calculation formulas for the macroscopic elastic constants, the elastic modulus and the Poisson’s ratio of pure metal are obtained, where the Poisson's ratio is the constant that is equal to 1?3. As an example, the elastic constants and the elastic modulus of pure copper are solved, where c11 is 175.811 GPa, c12 is 58.604 GPa, c33 is 58.604 GPa and E is 156.277 GPa, the rationality and the correctness of the model are verified. The model presented fully embodies the discreteness of the microstructure of solid, is a development to the continuum model, and is more suitable to reality, more simplified and more new to the study of the macroscopic elastic constants of pure metal.展开更多
Starting from one of the microscopic sdg interacting boson approximations, the lead-ing terms in the interaction Hamiltonian are discussed by using numerical investigations. Com-parisons of both the calculated levels ...Starting from one of the microscopic sdg interacting boson approximations, the lead-ing terms in the interaction Hamiltonian are discussed by using numerical investigations. Com-parisons of both the calculated levels and the overlap of wave functions between the exact re-sults and the approximations are made to find out negligible part in the Hamiltonian. The re-sults show that the leading terms given in this paper may provide a way to simplify the complexcalculations.展开更多
Within the framework of nuclear molecular orbital model,the semi-micro-scopic description of the gross resonant structure of <sup>16</sup>O+<sup>16</sup>O system is given.The pre-sent result is...Within the framework of nuclear molecular orbital model,the semi-micro-scopic description of the gross resonant structure of <sup>16</sup>O+<sup>16</sup>O system is given.The pre-sent result is comparable to other theoretical results which are in agreement with the ex-isting experimental data.展开更多
The structure of the irreducible collective spaces of the group Sp(12,R),which many-particle nuclear states are classified according to the chain Sp(12,R)⊃U(6)⊃SO(6)⊃SU_(pn)(3)⊗SO(2)⊃SO(3)of the proton-neutron symplec...The structure of the irreducible collective spaces of the group Sp(12,R),which many-particle nuclear states are classified according to the chain Sp(12,R)⊃U(6)⊃SO(6)⊃SU_(pn)(3)⊗SO(2)⊃SO(3)of the proton-neutron symplectic model(PNSM),is considered in detail.This chain of the PNSM was recently shown to correspond to a microscopic shell-model version of the Bohr-Mottelson collective model.The construction of the relevant shell-model representations of the Sp(12,R)group along this chain is considered for three nuclei with varying collective properties and from different mass regions.It is shown that the SU_(pn)(3)basis states of the Sp(12,R)representations belonging to the SO(6)irreps with seniorityυ≥υ0,withυ0 denoting the maximal seniority SO(6)irrep contained in the Sp(12,R)bandhead,are always Pauli allowed,but organized in a different way into different SO(6)shells.This is in contrast to the case of filling the levels of the standard three-dimensional harmonic oscillator and using the plethysm operation.Although the SU_(pn)(3)multiplets withinυ<υ0 are not all Pauli forbidden,it is safe to discard them.The results obtained in the present work are important for the practical application of the microscopic version of the Bohr-Mottelson collective model.展开更多
Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the correspondin...Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure.Thus,this work reviews the progress in the cyclic plasticity of Mg alloys.First,the existing macroscopic and microscopic experimental results of Mg alloys are summarized.Then,corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed.Finally,some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.展开更多
Model Investigation is the only feasible way to solve the problem about the component activities in concentrated multicomponent alloys and molten slags at present. The basic characteristic of SELF-SReM model is brief...Model Investigation is the only feasible way to solve the problem about the component activities in concentrated multicomponent alloys and molten slags at present. The basic characteristic of SELF-SReM model is briefly introduced in this paper. It intends to give out the systematical value of component activities in the whole homogeneous region of a concentrated multicomponent melt, then to provide a reliable database for the description of the equilibrium conditions associated with metallurgy processes. For molten slags, the key issue is to distinguish the accuracy of thermodynamic properties in binary systems. The fundamental approach for this task is to link the microscopic bond structure and macroscopic activity based on both of the measurement of high tem- perature Raman spectroscopy and the corresponding computation simulation according to molecular dynamics and quantum chemistry.展开更多
The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the...The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the carbon sequestration potential and promote the carbonation application in soil improvement,a laboratory-scale model investigation is designed under pressurized carbonation considering the influences of MgO dosage and CO_(2) ventilation mode(way).The temperature,dynamic resilience modulus,and dynamic cone penetration(DCP)were tested to assess the carbonation treatment effect.The physical,strength,and microscopic tests were also undertaken to reveal the evolution mechanisms of CO_(2) migration in the MgO-carbonated foundation.The results indicate that the temperature peaks of MgO-treated foundation emerge at w20 h during hydration,but occur at a distance of 0e25 cm from the gas source within 6 h during carbonation.The dynamic resilience moduli of the model foundation increase by more than two times after carbonation and the DCP indices reduce dramatically.As the distance from the gas inlet increases,the bearing capacity,strength,and carbon sequestration decrease,whereas the moisture content increases.Compared to the end ventilation,the middle ventilation produces a higher carbonation degree and a wider carbonation area.The cementation and filling of nesquehonite and dypingite/hydromagnesite are verified to be critical factors for carbonation evolution and enhancing mechanical performances.Finally,the overall carbonation model is described schematically in three stages of CO_(2) migration.The outcomes would help to facilitate the practical application of CO_(2) sequestration in soil treatment.展开更多
The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the...The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks.展开更多
In this paper, we adopt the coarse graining method proposed by Lee H K et al. to develop a macroscopic model from the microscopic traffic model-GOVM. The proposed model inherits the parameter p which considers the inf...In this paper, we adopt the coarse graining method proposed by Lee H K et al. to develop a macroscopic model from the microscopic traffic model-GOVM. The proposed model inherits the parameter p which considers the influence of next-nearest car introduced in the GOVM model. The simulation results show that the new model is strictly consistent with the former microscopic model. Using this macroscopic model, we can avoid considering the details of each traffic on the road, and build more complex models such as road network model easily in the future.展开更多
Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum e...Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.展开更多
In a multi-lane area,the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability.A study on safe lane shifting activity that focuses on threat assessment under real-t...In a multi-lane area,the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability.A study on safe lane shifting activity that focuses on threat assessment under real-time knowledge is necessary to enhance smooth vehicle flow.This paper proposed amore comprehensive lane changing guidance rule to investigate the status of surrounding vehicles to accommodate future vehicle-on-road collaborative environments based on these parameters 1)lane change demand and 2)treat assessment function.The collaborative relationships between vehicles are analyzed using a cellular automata model based on their location,velocity,and acceleration.We analyze and examine the relationship between the number of lanes and traffic flow when the road capacity is heavily mined via intelligent lane changing.Our analysis can further provide theoretical guidance for the selection of road expansion mode.Our proposed STCA-L is compared based on the average speed,average flow,lane changing frequency,spatial and temporal pattern of STCA,STCA-I,and STCA-S,and STCA-M under different vehicle densities.The numerical simulation results show that our proposed STCA-L provides themost flexible lane changing guidance in the multi-lanes road.Moreover,the simulated results show that the exponential growth of physical space cannot provide the corresponding increase in the average flow of vehicles.展开更多
基金Project(51275486)supported by the National Natural Science Foundation of China
文摘The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金Project(51671075) supported by the National Natural Science Foundation of ChinaProject(E201446) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project(SKLSP201606) supported by Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(2016M590970) supported by China Postdoctoral Science Foundation
文摘Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory (MicST), a further improved version of free dendritic growth model for pure materials was proposed. Model comparison indicates that there is a higher temperature at the tip of dendrite predicted by the present model compared with the corresponding model with the isothermal solid/liquid interface assumption. This is attributed to the sidewise thermal diffusion, i.e. the gradient of temperature along the nonisothermal interface. Furthermore, it is indicated that the distinction between the stability criteria from MicST and marginal stability theory (MarST) is more significant with the increase of bath undercoolings. Model test also indicates that the present model can give an agreement with the available experimental data. It is finally concluded that the nonisothermal nature of the solid/liquid interface and the stability criterion from MicST should be taken into account in modeling free dendritic growth.
基金Supported by National Natural Science Foundation of China(Nos.U2067205 and 12205098)National Key Laboratory of Computational Physics(HX02021-35).
文摘The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.
基金①The project supported by the National Natural Science Foundation of China
文摘The parameters of the sdg interacting boson model Hamiltonian are calculated for the <sup>104-110</sup>Pdisotopes.The calculations utilize the microscopic procedure based on the Dyson boson mapping proposedby Yang-Liu-Qi and extended to include the g boson effects.The calculated parameters reproduce thosevalues from the phenomenological fits.The resulting spectra are compared with the experimental spectra.
文摘Traffic simulation models have the potential to provide an objective, cost-effective and flexible approach to assessing system design, traffic operations and management strategies. In that regard, the calibration and validation of simulation model is crucial for appropriate decision making process. This paper presents an application of microscopic simulation model calibration and validation procedure for a multimodal urban traffic network. Model is developed by VISSIM and VISSIG software tools.
基金This work was financially supported by the National Natural Science Foundation of China (No.50071046) and the National High-Tech Research and Development Program of China (No.2002AA331051).
文摘The influence of temperature on the precipitation mechanism and sequence of L 12 and D022 phases during the early precipitation process of a Ni-15.Sat%Cr-14at%Al alloy was simulated based on the microscopic phase-field model. In the range from 873 to 1373 K, the precipitation mechanism transformed from spinodal decomposition to non-classic nucleation and growth; the incubation period prolonged gradually with increasing temperature. The volume fraction of L12 phases increased and that of D022 phases decreased. D022 phases disappeared at 1373 K, and finally single-phase L12 phases were formed.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50071046) the National High-Tech Research and Development Program of China (863 Program, No. 2002AA331051).
文摘Simulations are performed on temporal evolution of atom morphology and ordering parameters of Ni-14.5 Cr-16.5 Al alloy during early precipitation process at different temperatures based on microscopic phase-field theory; the relationship between precipitation sequence and mechanism of L12 and D022 structure and precipitation temperature are illuminated. The nonstoichiometric ordered L12 phases appear first with congruent ordering+spinodal decomposition mechanism which is then followed by precipitation of D022 phases at ordering domain boundaries of L12 phases by spinodal decomposition mechanism at 1073 K and 1223 K. The nonstoichiometric L12 phases transform to stoichiometric ordering phases gradually. The incubation period of L12 and D022 phases is shorter at 1073 K than that 1223 K, and growth speed is higher at 1073 K. At 1373 K, L12 and D022 phases appear simultaneously by non-classical nucleation and growth mechanism. After that the particles of D022 phases diminish and disappear gradually; L12 phases grow and single L12 phases are remained at last.
文摘The research activities of the calculation of the elastic constants of metal are mainly focused on the elastic constants of crystal at the micro level. To the calculation of the macroscopic elastic constants of metal, although molecular dynamics method and quasicontinuum method can be used, but there are shortcomings in them, such as a large amount of computation and that the spatial scale of the study model is limited. Therefore, with a pure metal thin plate composed of a single layer of microscopic particles as research object, a new mechanical model is established after the interactions between microscopic particles of the thin plate are applied on the continuum mechanics model of the thin plate. According to this model, the calculation formulas for the microscopic elastic constants, which are the elastic constants of any triangle region in the model, are obtained. After the concept of the ideal micro structure is presented, the calculation formulas for the macroscopic elastic constants, the elastic modulus and the Poisson’s ratio of pure metal are obtained, where the Poisson's ratio is the constant that is equal to 1?3. As an example, the elastic constants and the elastic modulus of pure copper are solved, where c11 is 175.811 GPa, c12 is 58.604 GPa, c33 is 58.604 GPa and E is 156.277 GPa, the rationality and the correctness of the model are verified. The model presented fully embodies the discreteness of the microstructure of solid, is a development to the continuum model, and is more suitable to reality, more simplified and more new to the study of the macroscopic elastic constants of pure metal.
基金The project supported by the National Natural Science Foundation of China
文摘Starting from one of the microscopic sdg interacting boson approximations, the lead-ing terms in the interaction Hamiltonian are discussed by using numerical investigations. Com-parisons of both the calculated levels and the overlap of wave functions between the exact re-sults and the approximations are made to find out negligible part in the Hamiltonian. The re-sults show that the leading terms given in this paper may provide a way to simplify the complexcalculations.
基金The project supported by National Natural Science Foundation of China.
文摘Within the framework of nuclear molecular orbital model,the semi-micro-scopic description of the gross resonant structure of <sup>16</sup>O+<sup>16</sup>O system is given.The pre-sent result is comparable to other theoretical results which are in agreement with the ex-isting experimental data.
文摘The structure of the irreducible collective spaces of the group Sp(12,R),which many-particle nuclear states are classified according to the chain Sp(12,R)⊃U(6)⊃SO(6)⊃SU_(pn)(3)⊗SO(2)⊃SO(3)of the proton-neutron symplectic model(PNSM),is considered in detail.This chain of the PNSM was recently shown to correspond to a microscopic shell-model version of the Bohr-Mottelson collective model.The construction of the relevant shell-model representations of the Sp(12,R)group along this chain is considered for three nuclei with varying collective properties and from different mass regions.It is shown that the SU_(pn)(3)basis states of the Sp(12,R)representations belonging to the SO(6)irreps with seniorityυ≥υ0,withυ0 denoting the maximal seniority SO(6)irrep contained in the Sp(12,R)bandhead,are always Pauli allowed,but organized in a different way into different SO(6)shells.This is in contrast to the case of filling the levels of the standard three-dimensional harmonic oscillator and using the plethysm operation.Although the SU_(pn)(3)multiplets withinυ<υ0 are not all Pauli forbidden,it is safe to discard them.The results obtained in the present work are important for the practical application of the microscopic version of the Bohr-Mottelson collective model.
基金financially supported by the National Natural Science Foundation of China(No.11532010)Doctoral Innovation Fund Program of Southwest Jiaotong University。
文摘Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure.Thus,this work reviews the progress in the cyclic plasticity of Mg alloys.First,the existing macroscopic and microscopic experimental results of Mg alloys are summarized.Then,corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed.Finally,some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.
文摘Model Investigation is the only feasible way to solve the problem about the component activities in concentrated multicomponent alloys and molten slags at present. The basic characteristic of SELF-SReM model is briefly introduced in this paper. It intends to give out the systematical value of component activities in the whole homogeneous region of a concentrated multicomponent melt, then to provide a reliable database for the description of the equilibrium conditions associated with metallurgy processes. For molten slags, the key issue is to distinguish the accuracy of thermodynamic properties in binary systems. The fundamental approach for this task is to link the microscopic bond structure and macroscopic activity based on both of the measurement of high tem- perature Raman spectroscopy and the corresponding computation simulation according to molecular dynamics and quantum chemistry.
基金funding provided by the National Science Foundation of China(Grant No.41902286)the Open Fund for the State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.SKLGME021029)the CRSRI Open Research Program(Grant No.CKWV20221015/KY).
文摘The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the carbon sequestration potential and promote the carbonation application in soil improvement,a laboratory-scale model investigation is designed under pressurized carbonation considering the influences of MgO dosage and CO_(2) ventilation mode(way).The temperature,dynamic resilience modulus,and dynamic cone penetration(DCP)were tested to assess the carbonation treatment effect.The physical,strength,and microscopic tests were also undertaken to reveal the evolution mechanisms of CO_(2) migration in the MgO-carbonated foundation.The results indicate that the temperature peaks of MgO-treated foundation emerge at w20 h during hydration,but occur at a distance of 0e25 cm from the gas source within 6 h during carbonation.The dynamic resilience moduli of the model foundation increase by more than two times after carbonation and the DCP indices reduce dramatically.As the distance from the gas inlet increases,the bearing capacity,strength,and carbon sequestration decrease,whereas the moisture content increases.Compared to the end ventilation,the middle ventilation produces a higher carbonation degree and a wider carbonation area.The cementation and filling of nesquehonite and dypingite/hydromagnesite are verified to be critical factors for carbonation evolution and enhancing mechanical performances.Finally,the overall carbonation model is described schematically in three stages of CO_(2) migration.The outcomes would help to facilitate the practical application of CO_(2) sequestration in soil treatment.
基金funded by the National Basic Research Programs of China(Grant Nos.2011CB013504 and 2014CB046901)the National Funds for Distinguished Young Scientists of China(Grant No.51025932)the National Nature Science Foundation of China(Grant No.41372272)
文摘The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks.
基金Project supported by National Creative Research Groups Science Foundation of China(Grant No.60721062)National Basic Research Program of China(Grant No.2007CB714000)
文摘In this paper, we adopt the coarse graining method proposed by Lee H K et al. to develop a macroscopic model from the microscopic traffic model-GOVM. The proposed model inherits the parameter p which considers the influence of next-nearest car introduced in the GOVM model. The simulation results show that the new model is strictly consistent with the former microscopic model. Using this macroscopic model, we can avoid considering the details of each traffic on the road, and build more complex models such as road network model easily in the future.
基金supported by National Natural Science Foundation of China(61374055)Natural Science Foundation of Jiangsu Province(BK20131381)+3 种基金China Postdoctoral Science Foundation funded project(2013M541663)Jiangsu Planned Projects for Postdoctoral Research Funds(1202015C)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(BJ213022)Scientific Research Foundation of Nanjing University of Posts and Telecommunications(NY214075,XJKY14004)
基金supported by the National Natural Science Foundation of China(42004086,42172159)the Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023007).
文摘Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.
基金supported in part by the National Natural Science Foundation of China(No.51905405)Basic Research Program of Natural Science of Shaanxi Province(No.2022JM-407)Guiding Program of Science and Technology of China Textile Industry Federation(No.2020106).
文摘In a multi-lane area,the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability.A study on safe lane shifting activity that focuses on threat assessment under real-time knowledge is necessary to enhance smooth vehicle flow.This paper proposed amore comprehensive lane changing guidance rule to investigate the status of surrounding vehicles to accommodate future vehicle-on-road collaborative environments based on these parameters 1)lane change demand and 2)treat assessment function.The collaborative relationships between vehicles are analyzed using a cellular automata model based on their location,velocity,and acceleration.We analyze and examine the relationship between the number of lanes and traffic flow when the road capacity is heavily mined via intelligent lane changing.Our analysis can further provide theoretical guidance for the selection of road expansion mode.Our proposed STCA-L is compared based on the average speed,average flow,lane changing frequency,spatial and temporal pattern of STCA,STCA-I,and STCA-S,and STCA-M under different vehicle densities.The numerical simulation results show that our proposed STCA-L provides themost flexible lane changing guidance in the multi-lanes road.Moreover,the simulated results show that the exponential growth of physical space cannot provide the corresponding increase in the average flow of vehicles.