期刊文献+
共找到20,744篇文章
< 1 2 250 >
每页显示 20 50 100
水下基盘SCM吊装工艺数字孪生实验系统设计
1
作者 伊鹏 张一驰 +3 位作者 李勇 张式鹏 梁西露 路兴涛 《实验技术与管理》 CAS 北大核心 2024年第6期110-115,共6页
为提高水下基盘SCM吊装的效率,解决实际设备吊装过程中人力监测难、成本高等问题,该文以水下基盘为实例,以SCM为实物,设计了一种数字孪生实验系统。在渲染软件中对在建模软件中建立的三维模型进行渲染,在开发软件中构建虚拟环境并编写... 为提高水下基盘SCM吊装的效率,解决实际设备吊装过程中人力监测难、成本高等问题,该文以水下基盘为实例,以SCM为实物,设计了一种数字孪生实验系统。在渲染软件中对在建模软件中建立的三维模型进行渲染,在开发软件中构建虚拟环境并编写程序。吊装过程的实际数据通过传感器测量并通过串口传回系统,实验系统实时处理传回数据并实时操控系统中虚拟模型的相对位置,实现了吊装SCM时数字模型和物理实体同态映射的目的,并通过实验验证了其有效性。 展开更多
关键词 水下基盘 scm 吊装工艺 数字孪生
下载PDF
In vivo 3-photon fluorescence microscopy of white matter in mouse brain excited at the 1700 nm window 被引量:1
2
作者 Jie Huang Jincheng Zhong +3 位作者 Shen Tong Yingxian Zhang Ping Qiu Ke Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第5期81-87,共7页
White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imagi... White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imaging in animal models in vivo.The third harmonic generation(THG)signal can be generated from white matter,but the bottom part of the white matter layer generates weak THG due to its high scattering.Here,we demonstrate an in vivo labeling and imaging technology,capable of visualizing the white matter layer in the mouse brain,combining°uorescence labeling with MitoTracker Red and three-photon°uorescence(3PF)microscopy excited at the 1700 nm window.3PF signals are several times higher than THG signals,resulting in deeper imaging of the white matter layer with the former.Our results indicate that 3PF microscopy is a promising technology for white matter imaging in the deep brain in vivo. 展开更多
关键词 Three-photon microscopy white matter MYELIN MitoTracker Red
下载PDF
Estimation-free spatial-domain image reconstruction of structured illumination microscopy 被引量:1
3
作者 Xiaoyan Li Shijie Tu +4 位作者 Yile Sun Yubing Han Xiang Hao Cuifang kuang Xu Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期45-58,共14页
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona... Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise. 展开更多
关键词 Structured illumination microscopy image reconstruction spatial domain digital micromirror device(DMD)
下载PDF
Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy
4
作者 王浪 李超凡 +3 位作者 RAN Maojin YUAN Manman 胡执一 LI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期877-887,共11页
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme... The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles. 展开更多
关键词 bismuth nanoparticles crystal growth transmission electron microscopy in-situ electron microscopy
下载PDF
Ultrafast photoemission electron microscopy:A multidimensional probe of nonequilibrium physics
5
作者 戴亚南 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期24-57,共34页
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact... Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics. 展开更多
关键词 ultrafast photoemission electron microscopy ultrafast momentum microscopy excited state physics
下载PDF
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
6
作者 Xin Xu Qin Luo +7 位作者 Jixiang Wang Yahui Song Hong Ye Xin Zhang Yi He Minxuan Sun Ruobing Zhang Guohua Shi 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期41-56,共16页
Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously anal... Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution. 展开更多
关键词 mesoscopic objective lens large field-of-view high resolution MULTI-WAVELENGTH wide-field microscopy confocal laser scanning microscopy
下载PDF
Revealing the microstructures of metal halide perovskite thin films via advancedtransmission electron microscopy
7
作者 Yeming Xian Xiaoming Wang Yanfa Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期30-41,共12页
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie... Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices. 展开更多
关键词 PEROVSKITE DEFECT INHOMOGENEITY transmission electron microscopy
下载PDF
基于MERIT和SCM整合方法的会展项目可行性分析——以山西智慧养老技术与服务展览会为例
8
作者 邢利娟 芦姝伊 马瑞瑄 《特区经济》 2024年第9期140-143,共4页
为了避免盲目投资和资源浪费,大型会展项目在启动初期都需要进行可行性分析。通过整合运用MERIT和SCM方法,本文以山西智慧养老技术与服务展览会为例,从市场、经济效益、资源条件、创新性、发展趋势五个方面开展全面评估,提出对人员、物... 为了避免盲目投资和资源浪费,大型会展项目在启动初期都需要进行可行性分析。通过整合运用MERIT和SCM方法,本文以山西智慧养老技术与服务展览会为例,从市场、经济效益、资源条件、创新性、发展趋势五个方面开展全面评估,提出对人员、物资、资金、信息技术等各类要素进行有效规划控制,以此探讨得出在山西策划组织智慧养老技术与服务展览会是非常必要的且具创新性、可行性的结论,以期为该展会的立项与实施提供一定的参考与借鉴。 展开更多
关键词 MERIT分析法 scm分析法 会展项目可行性 会展项目创新
下载PDF
Recent progress about transmission electron microscopy characterizations on lithium-ion batteries
9
作者 Yihang Liu Qiuyun Li Ziqiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期39-56,I0002,共19页
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always... With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed. 展开更多
关键词 Electron microscopy characterizations Lithium-ion batteries DENDRITES SEI
下载PDF
Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
10
作者 黄威 俞金玲 +7 位作者 刘雨 彭燕 王利军 梁平 陈堂胜 徐现刚 刘峰奇 陈涌海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期630-637,共8页
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a&#... Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect. 展开更多
关键词 scanning anisotropy microscopy SiC reflection anisotropy edge dislocation
下载PDF
A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy
11
作者 Jihye Park Jong Hwan Lim +4 位作者 Jin-Hyuk Kang Jiheon Lim Ho Won Jang Hosun Shin Sun Hwa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期155-177,共23页
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach... To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM. 展开更多
关键词 Scanning electrochemical microscopy ELECTROCATALYST ELECTROCATALYSIS Water splitting Fuel cell Metal-oxygen battery
下载PDF
Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy
12
作者 Qiuhong Liu Qing Du +7 位作者 Xiaobin Zhang Yuan Wu Andrey A.Rempel Xiangyang Peng Xiongjun Liu Hui Wang Wenli Song Zhaoping Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期877-886,共10页
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit... Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed. 展开更多
关键词 high entropy alloys transmission electron microscopy short-range ordering deformation mechanisms
下载PDF
Advancing respirable coal mine dust source apportionment:a preliminary laboratory exploration of optical microscopy as a novel monitoring tool
13
作者 Nestor Santa Emily Sarver 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期222-233,共12页
Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u... Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines. 展开更多
关键词 Polarized light microscopy Image processing Dust monitoring Respirable silica Coal mining
下载PDF
Corneal nerve changes by anti-glaucoma medications examined by in vivo confocal microscopy
14
作者 Xin-Yuan Zhu Qing-Shu Ge +7 位作者 Zong-Yi Li Long-Fang Zhou Qian-Wen Bu Ying Su Xin-Jie Wang Qing-Jun Zhou Xiao-Jing Pan Die Hu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1645-1653,共9页
AIM:To evaluate the effects of antiglaucoma eye drops on corneal nerves by in vivo confocal microscopy(IVCM).METHODS:This study comprised 79 patients diagnosed with glaucoma and 16 healthy control individuals.Among th... AIM:To evaluate the effects of antiglaucoma eye drops on corneal nerves by in vivo confocal microscopy(IVCM).METHODS:This study comprised 79 patients diagnosed with glaucoma and 16 healthy control individuals.Among the glaucoma patients,54 were treated with medication,while 25 remained untreated.Central corneal images were evaluated by IVCM,and then ACCMetrics was used to calculate the following parameters:corneal nerve fiber density(CNFD),branch density(CNBD),fiber length(CNFL),total branch density(CTBD),fiber area(CNFA),fiber width(CNFW),and fractal dimension(CNFrD).The correlation between IVCM parameters and drugs was evaluated using non-parametric measurements of Spearman’s rank correlation coefficient.RESULTS:The CNFD was reduced in glaucoma groups compared to healthy subjects(P<0.01).Patients using anti-glaucoma medications exhibited poorer confocal parameters compared to untreated patients.As the number of medications and usage count increased,CNFD,CNBD,CNFL,CTBD,CNFA,and CNFrD experienced a decline,while CNFW increased(all P<0.01).For the brinzolamide-therapy group,there was a significant decrease in CNFD and CNFL compared to the other monotherapy groups(P<0.001).In the absence of medication,CNFD in males was lower than that in females(P<0.05).Among patients under medication therapy,CNFD remained consistent between males and females.CONCLUSION:Antiglaucoma eye drops affect the microstructure of corneal nerves.IVCM and ACCMetrics are useful tools that could be used to evaluate the corneal nerve changes. 展开更多
关键词 glaucoma therapy corneal nerve fibers in vivo confocal microscopy ACCMetrics
下载PDF
SCM435冷镦钢连续冷却过程中的组织转变及球化退火
15
作者 于学森 李战卫 +2 位作者 王金涛 张宇 陈金军 《上海金属》 CAS 2024年第5期55-59,共5页
利用Gleeble-3800热模拟试验机测定了SCM435冷镦钢的热膨胀曲线。通过金相分析和硬度试验获得了钢的动态连续冷却转变曲线。研究了原始显微组织对钢球化退火效果的影响。结果表明:以小于0.5℃/s的速率冷却后,SCM435钢的组织主要为铁素... 利用Gleeble-3800热模拟试验机测定了SCM435冷镦钢的热膨胀曲线。通过金相分析和硬度试验获得了钢的动态连续冷却转变曲线。研究了原始显微组织对钢球化退火效果的影响。结果表明:以小于0.5℃/s的速率冷却后,SCM435钢的组织主要为铁素体和珠光体,以1℃/s及以上速率冷却后组织为贝氏体和马氏体以及少量铁素体,以3℃/s及以上速率冷却后组织为马氏体和贝氏体,以15℃/s及以上速率冷却后组织全部为马氏体。采用相同工艺球化退火时,马氏体和贝氏体的球化效果优于珠光体和铁素体。通过优化轧制工艺试制的原组织为贝氏体和马氏体的SCM435钢盘条球化退火后,组织中碳化物分布均匀,球化效果好,球化退火时间明显缩短。 展开更多
关键词 scm435冷镦钢 动态CCT曲线 贝氏体 马氏体 球化退火
下载PDF
Surface evolution of thermoelectric material KCu_(4)Se_(3) explored by scanning tunneling microscopy
16
作者 夏玉敏 马妮 +7 位作者 蔡德胜 刘宇舟 谷易通 于淦 霍思宇 庞文慧 肖翀 秦胜勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期422-427,共6页
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc... Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance. 展开更多
关键词 THERMOELECTRIC KCu_(4)Se_(3) scanning tunneling microscopy(STM) EVOLUTION
下载PDF
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
17
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
下载PDF
A promising approach for quantifying focal stroke modeling and assessing stroke progression:optical resolution photoacoustic microscopy photothrombosis
18
作者 Xiao Liang Xingping Quan +6 位作者 Xiaorui Geng Yujing Huang Yonghua Zhao Lei Xi Zhen Yuan Ping Wang Bin Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期2029-2037,共9页
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me... To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes. 展开更多
关键词 AGE-DEPENDENT cerebral cortex ischemic stroke mouse model optical coherence tomography angiography photoacoustic microscopy PHOTOTHROMBOSIS vascular imaging
下载PDF
Correlation of work function and stacking fault energy through Kelvin probe force microscopy and nanohardness in diluteα-magnesium
19
作者 Yigit Türe Ali Arslan Kaya +2 位作者 Hüseyin Aydin Jiang Peng Servet Turan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期237-250,共14页
Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ... Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation. 展开更多
关键词 Mg alloys Dilute alloys Work function Stacking fault energy Kelvin probe force microscopy Short range order Miedema NANOINDENTATION EUTECTICS
下载PDF
SCM435钢摇臂螺栓断裂原因
20
作者 吕金峄 王勤 +2 位作者 李亚洲 贾川 郭明仪 《理化检验(物理分册)》 CAS 2024年第6期37-41,共5页
某汽车发动机SCM435钢摇臂螺栓在试验过程中发生断裂现象。采用宏观观察、化学成分分析、金相检验、硬度测试、扫描电镜分析等方法对螺栓的断裂原因进行分析。结果表明:摇臂螺栓的化学成分和硬度均符合产品要求,显微组织无异常;摇臂螺... 某汽车发动机SCM435钢摇臂螺栓在试验过程中发生断裂现象。采用宏观观察、化学成分分析、金相检验、硬度测试、扫描电镜分析等方法对螺栓的断裂原因进行分析。结果表明:摇臂螺栓的化学成分和硬度均符合产品要求,显微组织无异常;摇臂螺栓在使用过程中发生偏载,承受了超出其疲劳强度的异常弯曲应力,最终导致材料疲劳断裂。 展开更多
关键词 scm435钢 摇臂螺栓 弯曲应力 显微组织 偏载 断裂
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部