Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffract...Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and electron probe microanalysis(EPMA).The hornblendes are σ and δ type porphyroclasts with the new-born needle shaped grains as their tails.The analysis of lattice preferred orientation(LPO) of both the porphyroclasts and the new-born grains shows that the main slip system of the deformed hornblende is(100)<001>,suggesting that the fabric characteristics of new-born grains inherit that of porphyroclasts.Sub-microstructures show the porphyroclast core is dominated by dislocation tangle,little or no dislocations in the new-born grains,and the subgrains confined by dislocations in the transition zone between porphyroclasts and new-born grains.By using plagioclase-hornblende geothermometry and hornblende geobarometry,the estimated temperature and pressure of porphyroclasts are 675.3-702.9℃ and 0.29-0.41 GPa and those of new-born grains are 614.1-679.0℃ and 0.11-0.31 GPa.The bulging recrystallization is summarized as deformation mechanisms of hornblende by the discussions of the microstructures,EBSD fabric,sub-microstructures,and the deformed temperature and pressure.展开更多
Introducing a bimodal grain-size distribution has been demonstrated an efficient strategy for fabricating high-strength and ductile metallic materials, where fine grains provide strength, while coarse grains enable st...Introducing a bimodal grain-size distribution has been demonstrated an efficient strategy for fabricating high-strength and ductile metallic materials, where fine grains provide strength, while coarse grains enable strain hardening and hence decent ductility. Over the last decades, research activities in this area have grown enormously, including interesting results onfcc Cu, Ni and Al-Mg alloys as well as steel and Fe alloys via various thermo-mechanical processing approaches. However, investigations on bimodal Mg and other hcp metals are relatively few. A brief overview of the available approaches based on thermo- mechanical processing technology in producing bimodal microstructure for various metallic materials is given, along with a summary of unusual mechanical properties achievable by bimodality, where focus is placed on the microstructure-mechanical properties and relevant mechanisms. In addition, key factors that influencing bimodal strategies, such as compositions of starting materials and processing parameters, together with the challenges this research area facing, are identified and discussed briefly.展开更多
High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investi...High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investigated in the present study, with attentions to the evolution of γ/γ′ microstructure observed by scanning electron microscopy and the dislocation configuration characterized by transmission electron microscopy in each oriented specimen. At 1100 ℃/100 MPa as well as 900 ℃/445 MPa, the single crystal superalloy exhibits obvious stress rupture anisotropic behavior. The [001] oriented specimen has the longest rupture lifetime at 900 ℃/445 MPa, and the [111] oriented sample shows the best rupture strength at 1100 ℃/100 MPa. While the [011] oriented specimen presents the worst rupture lifetime at each testing condition, its stress rupture property at 1100 ℃/100 MPa is clearly improved, compared with900 ℃/445 MPa. The evident stress rupture anisotropy at 900 ℃/445 MPa is mainly attributed to the distinctive movement way of dislocations in each oriented sample. Whereas, at 1100 ℃/100 MPa, together with the individual dislocation configuration, the evolution of γ/γ′ microstructure in each orientation also plays a key role in the apparent stress rupture anisotropy.展开更多
In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron micros...In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), energy dispersive spectrum(EDS) and tensile testing.The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization.The second phases were dynamic precipitated and distributed more dispersively through extrusion.W-Phases(Mg3Zn3Y2) were twisted and broken, while I-Phases(Mg3Zn6Y) were spheroidized by deformation.Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties.The tensile strength and elongation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9% respectively which were improved greatly compared with those of as-cast alloy.The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.40772133)
文摘Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and electron probe microanalysis(EPMA).The hornblendes are σ and δ type porphyroclasts with the new-born needle shaped grains as their tails.The analysis of lattice preferred orientation(LPO) of both the porphyroclasts and the new-born grains shows that the main slip system of the deformed hornblende is(100)<001>,suggesting that the fabric characteristics of new-born grains inherit that of porphyroclasts.Sub-microstructures show the porphyroclast core is dominated by dislocation tangle,little or no dislocations in the new-born grains,and the subgrains confined by dislocations in the transition zone between porphyroclasts and new-born grains.By using plagioclase-hornblende geothermometry and hornblende geobarometry,the estimated temperature and pressure of porphyroclasts are 675.3-702.9℃ and 0.29-0.41 GPa and those of new-born grains are 614.1-679.0℃ and 0.11-0.31 GPa.The bulging recrystallization is summarized as deformation mechanisms of hornblende by the discussions of the microstructures,EBSD fabric,sub-microstructures,and the deformed temperature and pressure.
基金financially supported by the National Natural Science Foundation of China (Nos. 51501069, 51671093 and 51625402)Partial financial support came from the Science and Technology Development Program of Jilin Province (Nos. 20160519002JH and 20170520124JH)+1 种基金the Chang Bai Mountain Scholars Program (2013014)the talented youth lift project of Jilin province
文摘Introducing a bimodal grain-size distribution has been demonstrated an efficient strategy for fabricating high-strength and ductile metallic materials, where fine grains provide strength, while coarse grains enable strain hardening and hence decent ductility. Over the last decades, research activities in this area have grown enormously, including interesting results onfcc Cu, Ni and Al-Mg alloys as well as steel and Fe alloys via various thermo-mechanical processing approaches. However, investigations on bimodal Mg and other hcp metals are relatively few. A brief overview of the available approaches based on thermo- mechanical processing technology in producing bimodal microstructure for various metallic materials is given, along with a summary of unusual mechanical properties achievable by bimodality, where focus is placed on the microstructure-mechanical properties and relevant mechanisms. In addition, key factors that influencing bimodal strategies, such as compositions of starting materials and processing parameters, together with the challenges this research area facing, are identified and discussed briefly.
基金supported by the National High Technology Research and Development Program of China (“863 Program”,No. 20102014AA041701)the National Natural Science Foundation of China (No. 51331005) and (No. 51401210)
文摘High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investigated in the present study, with attentions to the evolution of γ/γ′ microstructure observed by scanning electron microscopy and the dislocation configuration characterized by transmission electron microscopy in each oriented specimen. At 1100 ℃/100 MPa as well as 900 ℃/445 MPa, the single crystal superalloy exhibits obvious stress rupture anisotropic behavior. The [001] oriented specimen has the longest rupture lifetime at 900 ℃/445 MPa, and the [111] oriented sample shows the best rupture strength at 1100 ℃/100 MPa. While the [011] oriented specimen presents the worst rupture lifetime at each testing condition, its stress rupture property at 1100 ℃/100 MPa is clearly improved, compared with900 ℃/445 MPa. The evident stress rupture anisotropy at 900 ℃/445 MPa is mainly attributed to the distinctive movement way of dislocations in each oriented sample. Whereas, at 1100 ℃/100 MPa, together with the individual dislocation configuration, the evolution of γ/γ′ microstructure in each orientation also plays a key role in the apparent stress rupture anisotropy.
基金Project supported by General Program of Liaoning Province Committee of Education(L2012035)Liaoning Province Science and Technology Plan(2013201018)Liaoning Province University Innovation Team Support Plan
文摘In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), energy dispersive spectrum(EDS) and tensile testing.The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization.The second phases were dynamic precipitated and distributed more dispersively through extrusion.W-Phases(Mg3Zn3Y2) were twisted and broken, while I-Phases(Mg3Zn6Y) were spheroidized by deformation.Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties.The tensile strength and elongation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9% respectively which were improved greatly compared with those of as-cast alloy.The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.