期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Two-dimensional Model of the Microstructural Evolution in Hot-strip Rolling Processes of C-Mn Steels by Computer Simulations
1
作者 Zhenyu LIU Wei WANG Guodong WANG Qiang ZHANG Northeast University of Technology,Shenyang,110006,ChinaDongqing MA Guoliang WU Jingshan LI Benxi Iron and Steel Company,Benxi,117000,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第3期215-218,共4页
In the present paper,the two-dimensional comprehensive model,which integrates the temperature model developed by the authors using finite difference methods and microstructural evolution model,has been developed.By us... In the present paper,the two-dimensional comprehensive model,which integrates the temperature model developed by the authors using finite difference methods and microstructural evolution model,has been developed.By using different microstructural evolution equations developed by Sellars,Senuma et al.and Easka et al.,the comparison studies have been made,which present that (1) the calculated γ-grain sizes show good agreements with the measured;(2) these equations show consistencies at the end of finishing stands. 展开更多
关键词 computer simulation hot-strip rolling microstructural evolution model
下载PDF
Microstructure evolution in large billet during reduction pretreatment based on laboratory experiments
2
作者 Yang Liu Jian-hua Liu Yang He 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第6期1244-1257,共14页
The reduction pretreatment process has been proposed to improve the center quality of large billet and reduce the rolling ratio.The microstructure evolution during the reduction pretreatment was further understood.The... The reduction pretreatment process has been proposed to improve the center quality of large billet and reduce the rolling ratio.The microstructure evolution during the reduction pretreatment was further understood.The austenite grains were refined after the reduction pretreatment experiment,especially those at the center of the billet.The effects of strain and strain rate on the average grain size were dependent on the deformation temperature.At a strain rate of 0.01 s-1 and 1200°C,the newly formed strain-free austenite grains grew very fast as the strain continued to increase,which resulted in the coarsening of austenite grains.The calculation results of the microstructure evolution model showed that at the same deformation temperature,the evolution curves of average grain size with different strain rates had the intersection points.With the increase in temperature,the position of intersection point moved to the downward direction of strain.The simulation results showed that when the reduction amount increased to 20%,the average grain size at the center was smaller than that near the surface.It could be inferred that when the reduction amount greatly exceeded 20%,the dynamic recrystallization at the center was mostly completed,and the austenite grain growth would become the main mechanism. 展开更多
关键词 Large billet Reduction pretreatment Dynamic recrystallization Grain refinement Microstructure evolution model
原文传递
Quantitative analysis of microstructure evolution induced by temperature rise during(α+β) deformation of TA15 titanium alloy 被引量:2
3
作者 Liang-Gang Guo Shuai Zhu +2 位作者 He Yang Xiao-Guang Fan Fu-Long Chen 《Rare Metals》 SCIE EI CAS CSCD 2016年第3期223-229,共7页
Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to... Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy. 展开更多
关键词 TA15 titanium alloy Temperature rise Deformation heat Microstructure evolution model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部