In the present paper,the two-dimensional comprehensive model,which integrates the temperature model developed by the authors using finite difference methods and microstructural evolution model,has been developed.By us...In the present paper,the two-dimensional comprehensive model,which integrates the temperature model developed by the authors using finite difference methods and microstructural evolution model,has been developed.By using different microstructural evolution equations developed by Sellars,Senuma et al.and Easka et al.,the comparison studies have been made,which present that (1) the calculated γ-grain sizes show good agreements with the measured;(2) these equations show consistencies at the end of finishing stands.展开更多
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s...Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX).展开更多
55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechan...55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechanical properties of the steel,in order to find out an optimal heat treatment scheme to obtain an excellent balance of strength,ductility and toughness.The steel was quenched at temperature from 790℃ to 910℃ followed by tempering treatments of 100–650℃ for 5 h.The mechanical property tests were carried out by tensile,impact toughness and hardness.Optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the austenite grains,lath martensite,carbides and fracture morphology.The results show that the quenching temperature mainly influences the austenite grain size and the volume fraction of undissolved carbides(UCs),while the tempering temperature mainly influences the size and morphology of the martensite with a body centered cubic(BCC)and the carbides with a face centered cubic(FCC).The mechanical properties of the steel,including yield and tensile strength,ductility,impact toughness and hardness,get an excellent balance at a quenching range of 850–870C.As the tempering temperature increases,the yield and tensile strength and hardness decrease,while the ductility and impact toughness increase.These variation trends can be further verified by fracture SEM observation and analysis.Combined with a macro-micro coupled finite element(MMFE)modeling technique,the cooling rate,microstructural evolution and yield strength of the steel were predicted and compared with the tested data.展开更多
In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the in...In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.展开更多
A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, m...A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Many factors including constitutional undercooling, curvature undercooling andanisotropy, which had vital influences on the microstructure evolution, were considered in the model. Simulated resultsshowed that final microstructural patterns and free dendritic growth could be predicted reasonably and calculatedresults were coincident with experimental The simulated results of free dendritic growth indicated that the strength ofanisotropy has significant effects on free dendritic growth, dendrite profile, micro solute and temperature distribution.The dendritic grain profiles with fully-grown parallel secondary arm tend to be formed at the intensive anisotropy,while near octahedral grain profiles with small protuberances of surface at low strength of anisotropy. The simulatedresults of free dendritic growth also indicated that there are small molten pools left in interdendritic areas. This ishelpful to understand the fundamental of the formation of microstructure related defects such as microsegregationand microporosity.展开更多
The numerical simulation for microstructure evolution of Al-Si alloy in solidification process is carried out with phase field model. The phase field model, solution algorithm and the program of dendrite growth are in...The numerical simulation for microstructure evolution of Al-Si alloy in solidification process is carried out with phase field model. The phase field model, solution algorithm and the program of dendrite growth are introduced. The definition of initial condition, boundary condition and the stability condition of differential format are all included. The simulation results show that the evolution of dendrite morphology is as follows: the initial circle nucleus transforms to the rectangle one firstly, then its corners develop to the four trunks and from which the secondary side branches are generated and even the third side branches are produced from secondary ones. The dendrite tip radius decreases quickly at the initial stage and changes slowly at the late stage, which is mainly due to the fact that more and more side branches appear and grow up. The comparisons of dendrite morphology between simulated results and investigations by others are also presented. It is proved that the dendrite morphologies are similar in trunks and arms growth, so the developed phase field program is accurate.展开更多
The prediction of microstructure constituents and their morphologies is of great importance for the evaluation of material properties and design of advanced materials.There have been considerable efforts to model and ...The prediction of microstructure constituents and their morphologies is of great importance for the evaluation of material properties and design of advanced materials.There have been considerable efforts to model and simulate microstructure evolution using a wide spectrum of models and simulation approaches.This paper initially reviews the atomistic and mesoscale simulation approaches for microstructure evolution,emphasizing their advantages and disadvantages.Atomistic approaches,such as molecular dynamics,are restricted by the scale of the studied system because they are computationally expensive.Continuum mesoscale simulation approaches,such as phase field,cellular automata,and Monte Carlo,have inconsistent phenomenological equations,each of which only describes one aspect of microstructure evolution.To provide comprehensive insight into microstructure evolution,a unified model that is capable of equally evaluating the nucleation and growth processes is required.In this paper,a physics-based model is proposed that incorporates statistical mechanics,the energy conservation law,and the force equilibrium concept to include all aspects of microstructure evolution.A compatible simulation approach is also described to simulate microstructure evolution during thermomechanical treatments.Furthermore,the microstructure evolution of AISI 304 austenitic steel during isothermal heat treatment and fusion welding is simulated and discussed.The use of fundamental physical rules instead of phenomenological equations,together with the real spatial and temporal scales of the proposed model,facilitates the comparison of the simulation results with experimental results.To examine the accuracy of the proposed simulation approach,the isothermal heat treatment simulation results are compared with experimental data over a broad region of temperatures and time periods.展开更多
The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate ...The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.展开更多
文摘In the present paper,the two-dimensional comprehensive model,which integrates the temperature model developed by the authors using finite difference methods and microstructural evolution model,has been developed.By using different microstructural evolution equations developed by Sellars,Senuma et al.and Easka et al.,the comparison studies have been made,which present that (1) the calculated γ-grain sizes show good agreements with the measured;(2) these equations show consistencies at the end of finishing stands.
基金supported by the National Natural Science Foundation of China(Grant Nos.51805064,51701034)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN201801137,KJ1600922)+1 种基金the Basic and Advanced Research Project of Chongqing Science and Technology Commission(Grant Nos.cstc2017jcyj AX0062,cstc2018jcyj AX0035)the Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology(Grant Nos.KFJJ2003)
文摘Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX).
基金the fellowship of China Postdoctoral Science Foundation(Grant No.2020M672309)。
文摘55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechanical properties of the steel,in order to find out an optimal heat treatment scheme to obtain an excellent balance of strength,ductility and toughness.The steel was quenched at temperature from 790℃ to 910℃ followed by tempering treatments of 100–650℃ for 5 h.The mechanical property tests were carried out by tensile,impact toughness and hardness.Optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the austenite grains,lath martensite,carbides and fracture morphology.The results show that the quenching temperature mainly influences the austenite grain size and the volume fraction of undissolved carbides(UCs),while the tempering temperature mainly influences the size and morphology of the martensite with a body centered cubic(BCC)and the carbides with a face centered cubic(FCC).The mechanical properties of the steel,including yield and tensile strength,ductility,impact toughness and hardness,get an excellent balance at a quenching range of 850–870C.As the tempering temperature increases,the yield and tensile strength and hardness decrease,while the ductility and impact toughness increase.These variation trends can be further verified by fracture SEM observation and analysis.Combined with a macro-micro coupled finite element(MMFE)modeling technique,the cooling rate,microstructural evolution and yield strength of the steel were predicted and compared with the tested data.
基金funding supported by National Natural Science Foundation of China(No.52175285)Beijing Municipal Natural Science Foundation(No.3182025)+1 种基金National Defense Science and Technology Rapid support Project(No.61409230113)Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB and Fundamental Research Funds for the Central Universities(No.FRFBD-20-08A,FRF-TP-20-009A2)。
文摘In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.
基金The work was sponsored by the Significant Project of National Natural Science Foundation of China(No.59990470-3), the National Significant Fundamental Research Project of the Ministry of Science and Technology of China(No. G2000067208-3) and the Fundamental Research Project of Tsinghua University.
文摘A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Many factors including constitutional undercooling, curvature undercooling andanisotropy, which had vital influences on the microstructure evolution, were considered in the model. Simulated resultsshowed that final microstructural patterns and free dendritic growth could be predicted reasonably and calculatedresults were coincident with experimental The simulated results of free dendritic growth indicated that the strength ofanisotropy has significant effects on free dendritic growth, dendrite profile, micro solute and temperature distribution.The dendritic grain profiles with fully-grown parallel secondary arm tend to be formed at the intensive anisotropy,while near octahedral grain profiles with small protuberances of surface at low strength of anisotropy. The simulatedresults of free dendritic growth also indicated that there are small molten pools left in interdendritic areas. This ishelpful to understand the fundamental of the formation of microstructure related defects such as microsegregationand microporosity.
文摘The numerical simulation for microstructure evolution of Al-Si alloy in solidification process is carried out with phase field model. The phase field model, solution algorithm and the program of dendrite growth are introduced. The definition of initial condition, boundary condition and the stability condition of differential format are all included. The simulation results show that the evolution of dendrite morphology is as follows: the initial circle nucleus transforms to the rectangle one firstly, then its corners develop to the four trunks and from which the secondary side branches are generated and even the third side branches are produced from secondary ones. The dendrite tip radius decreases quickly at the initial stage and changes slowly at the late stage, which is mainly due to the fact that more and more side branches appear and grow up. The comparisons of dendrite morphology between simulated results and investigations by others are also presented. It is proved that the dendrite morphologies are similar in trunks and arms growth, so the developed phase field program is accurate.
文摘The prediction of microstructure constituents and their morphologies is of great importance for the evaluation of material properties and design of advanced materials.There have been considerable efforts to model and simulate microstructure evolution using a wide spectrum of models and simulation approaches.This paper initially reviews the atomistic and mesoscale simulation approaches for microstructure evolution,emphasizing their advantages and disadvantages.Atomistic approaches,such as molecular dynamics,are restricted by the scale of the studied system because they are computationally expensive.Continuum mesoscale simulation approaches,such as phase field,cellular automata,and Monte Carlo,have inconsistent phenomenological equations,each of which only describes one aspect of microstructure evolution.To provide comprehensive insight into microstructure evolution,a unified model that is capable of equally evaluating the nucleation and growth processes is required.In this paper,a physics-based model is proposed that incorporates statistical mechanics,the energy conservation law,and the force equilibrium concept to include all aspects of microstructure evolution.A compatible simulation approach is also described to simulate microstructure evolution during thermomechanical treatments.Furthermore,the microstructure evolution of AISI 304 austenitic steel during isothermal heat treatment and fusion welding is simulated and discussed.The use of fundamental physical rules instead of phenomenological equations,together with the real spatial and temporal scales of the proposed model,facilitates the comparison of the simulation results with experimental results.To examine the accuracy of the proposed simulation approach,the isothermal heat treatment simulation results are compared with experimental data over a broad region of temperatures and time periods.
基金Projected(51775068)supported by the National Natural Science Foundation of China.
文摘The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.