期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
An overview of biomass solid fuels:Biomass sources,processing methods,and morphological and microstructural properties 被引量:1
1
作者 Segun E.Ibitoye Rasheedat M.Mahamood +2 位作者 Tien-Chien Jen Chanchal Loha Esther T.Akinlabi 《Journal of Bioresources and Bioproducts》 EI CSCD 2023年第4期333-360,共28页
Biomass solid fuel(BSF)has emerged as a promising renewable energy source,but its morphological and microstructural properties are crucial in determining their physical,mechanical,and chemical characteristics.This pap... Biomass solid fuel(BSF)has emerged as a promising renewable energy source,but its morphological and microstructural properties are crucial in determining their physical,mechanical,and chemical characteristics.This paper provides an overview of recent research on BSF.The focus is on biomass sources,BSF processing methods,and morphological and microstructural properties,with a special emphasis on energy-related studies.Specific inclusion and exclusion criteria were established for the study to ensure relevance.The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years.Various technologies for converting biomass into usable energy were discussed,including gasification,torrefaction,carbonization,hydrothermal carbonization(HTC),and pyrolysis.Each has advantages and disadvantages in energy performance,techno-economics,and climate impact.Gasification is efficient but requires high investment.Pyrolysis produces bio-oil,char,and gases based on feedstock availability.Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications.Torrefaction increases energy density for co-firing with coal.HTC processes wet biomass efficiently with lower energy input.Thermal treatment affects BSF durability and strength,often leading to less durability due to voids and gaps between particles.Hydrothermal carbonization alters surface morphology,creating cavities,pores,and distinctive shapes.Slow pyrolysis generates biochar with better morphological properties,while fast pyrolysis yields biochar with lower porosity and surface area.Wood constitutes 67%of the biomass sources utilized for bioenergy generation,followed by wood residues(5%),agro-residues(4%),municipal solid wastes(3%),energy crops(3%),livestock wastes(3%),and forest residues(1%).Each source has advantages and drawbacks,such as availability,cost,environmental impact,and suitability for specific regions and energy requirements.This review is valuable for energy professionals,researchers,and policymakers interested in biomass solid fuel. 展开更多
关键词 Biomass feedstock microstructural property Morphological property Renewable energy Thermal treatment
原文传递
Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization 被引量:3
2
作者 Wan-song Li Hong-ye Gao +2 位作者 Hideharu Nakashima Satoshi Hata Wen-huai Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期906-919,共14页
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A... In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected. 展开更多
关键词 low-carbon steel quenching partitioning microstructure mechanical properties interfaces
下载PDF
Microstructural Characterizations and Mechanical Properties of Mg-8Sn-1Al-1Zn-xCu Alloys 被引量:1
3
作者 程伟丽 WANG Miao +5 位作者 QUE Zhongping WANG Hongxia ZHANG Jinshan XU Chunxiang YOU Bongsun YIM Changdong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期803-807,共5页
Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing ma... Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing machine. The experimental results indicate that adding Cu to TAZ811 alloy leads to the formation of the AlMgCu and Cu3 Sn phases. Tensile tests indicate that yield strength increases fi rstly and then decreases with increasing Cu content. The alloy with the addition of 1.5wt% Cu exhibits optimal mechanical properties among the studied alloys. The improved mechanical properties can be ascribed to the second phase strengthening and fi ne-grain strengthening mechanisms resulting from the more dispersed second phases and smaller grain size, respectively. The decrease in ultimate tensile strength and elongation of TAZ811-2.0wt% Cu alloy at room temperature is ascribed to the formation of continuous AlMgCu and coarse Mg2 Sn phases in the liquid state. 展开更多
关键词 Mg alloys phase formation microstructure mechanical properties
下载PDF
Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding 被引量:1
4
作者 Mengxian Li Zhiping Sun +1 位作者 Zhaomin Xu Zhiming Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期50-61,共12页
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi... 21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation. 展开更多
关键词 high entropy alloy laser cladding MICROSTRUCTURE microstructure and properties
下载PDF
Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermomechanical treatment 被引量:13
5
作者 彭小娜 郭鸿镇 +2 位作者 石志峰 秦春 赵张龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期682-689,共8页
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated.... Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility. 展开更多
关键词 TC4-DT titanium alloy thermomechanical treatment microstructures tensile properties
下载PDF
Effect of arc-ultrasound on microstructures and mechanical properties of plasma arc welded joints of SiC_p/Al MMCs 被引量:2
6
作者 雷玉成 王志伟 陈希章 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期272-277,共6页
The effect of arc-ultrasound on microstructures and mechanical properties of SiCp/6061A1 MMCs joints produced by arc-ultrasound plasma arc "in-situ" alloy-welding with different excitation frequencies was investigat... The effect of arc-ultrasound on microstructures and mechanical properties of SiCp/6061A1 MMCs joints produced by arc-ultrasound plasma arc "in-situ" alloy-welding with different excitation frequencies was investigated, in which argon-nitrogen mixture was used as plasma gas, Ti wire as filler and the arc-ultrasound was produced by modulating the plasma arc with high frequency. The results show that arc-ultrasound could refine the new reinforced composites such as TiC, TiN significantly, and improve their distribution greatly. And new phase A13Ti becomes finer and less. The test results of mechanical properties indicate that the maximum tensile strength of welded joints is gained when the excitation frequency is 50 kHz, and the maximum is 225 MPa, raising by about 7% comoared with conventional nlasma arc welding (PAW) (20q MPa). 展开更多
关键词 SiCp/A1 MMCs arc-ultrasound plasma arc welding microstructure and property
下载PDF
The Impact of Sweet Potato Flour Supplementation on Functional and Sensorial Properties of Yoghurt
7
作者 Aisha El-Attar Nour El-Hoda Ahmed +1 位作者 Morsi El-Soda Silvia M. Zaki 《Food and Nutrition Sciences》 2022年第4期404-423,共20页
Sweet potatoes have become a research focus in recent years, due to their particular nutritional and functional qualities. Considering yoghurt is one of the most popular dairy products, sweet potato supplementation wi... Sweet potatoes have become a research focus in recent years, due to their particular nutritional and functional qualities. Considering yoghurt is one of the most popular dairy products, sweet potato supplementation will play a significant impact on the produced yoghurt texture it will also add attractive orange colour to the final product. The article focused on the replacement of the stabilizers used in the manufacture of yoghurt with sweet potato flour dehydrated in a lab (SPFL) due to its functional features and a less expensive alternative and the improvement of yoghurt colour due to the presence of anthocyanin pigment. In order to reach these goals, experimental yoghurt was fortified with 0, 0.5, 1, 2, and 4 g SPFL/100g cow milk (%) and stored at 4&degC for 14 days. The obtained data were then compared with commercial yoghurt samples (CS1, CS2, CS3, and CS4). Sensory evaluation revealed that the 2% SPFL, CS1, and CS3 obtained higher scores than the other treatments. The fat content of the yoghurts was identical whereas, the other physicochemical parameters and water holding capacity (WHC %) levels varied. SPFL supplementation had a significant impact on the rheological properties of yoghurt production, allowing sweet potato flour to replace the industrial stabiliser. Scanning Electron Micrograph (SEM) of yoghurt enriched with SPFL revealed denser and smaller gaps, as well as the presence of sweet potato globules embedded in and attached to the gel matrix. The results obtained in the present research imply that sweet potatoes can be used to produce a kind of cohesive and gummy yoghurt that can be used instead of industrial stabilizers. 展开更多
关键词 Sweet Potato Yoghurt Sensorial Evaluation PHYSICOCHEMICAL Rheological properties and microstructural properties
下载PDF
Mechanism of Effects of Rare Earths on Microstructure and Properties at Elevated Temperatures of AZ91 Magnesium Alloy 被引量:19
8
作者 张国英 张辉 +1 位作者 高明 魏丹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期348-351,共4页
By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were perfor... By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were performed on undoped and doped bulk α Mg for comparison.The results showed that Al atoms segregated at GBs in AZ91 alloys.When RE atoms were added,they also segregated at GBs,and their segregation is stronger than Al atoms'.Therefore,RE atoms retard the segregation of Al atoms.Calculations of interaction energy indicated that Al atoms repelled each other,and could form ordered phase with host Mg atoms.On the contrary to the case of Al,RE atoms attracted each other,they could not form ordered phase with Mg,but could form clusters.Between RE and Al,there existed attractive interaction,and this attractive interaction was the origin of Al11RE3 precipitation.Precipitation of Al11RE3 particles with high melting point and high thermal stability along GB improves high temperature properties of AZ91 alloys. 展开更多
关键词 electronic structure ALLOYING grain boundary aggregation microstructure and properties of magnesium alloy rare earths
下载PDF
Effects of calcium addition on as-cast microstructure and mechanical properties of Mg-5Zn-5Sn alloy 被引量:9
9
作者 杨明波 程亮 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期769-775,共7页
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to t... The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties. 展开更多
关键词 magnesium alloy Mg-5Zn-5Sn alloy microstructure and properties Ca addition
下载PDF
Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars 被引量:7
10
作者 Chun-jie Xu Pan Dai +3 位作者 Zheng-yang Zhang Zhong-ming Zhang Jin-cheng Wang Yong-hui Liu 《China Foundry》 SCIE CAS 2015年第2期104-110,共7页
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ... In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 &#176;C and 135 min, and austempering temperature and time are 279 &#176;C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively. 展开更多
关键词 horizontal continuous casting (HCC) ductile iron dense bars austempered ductile iron (ADI) microstructure and mechanical properties orthogonal test
下载PDF
Effect of V and Nb additions on microstructure,properties,and deformability of Ti-45Al-9 (V,Nb,Y) alloy 被引量:3
11
作者 Yang Fei Kong Fantao +1 位作者 Chen Yuyong Xiao Shulong 《China Foundry》 SCIE CAS 2010年第4期357-361,共5页
Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM resu... Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM results showed that Ti-45Al-9(V, Nb, Y) alloys were mainly composed of γ, α 2 , and β phase, and the volume fraction of β phase increased with the increase of the atomic ratio of V/Nb. The alloys were featured with lamellar microstructure with β and γ phases locating at the colony boundaries, and some β precipitates appearing at γ/γ interfaces. It was found that the colony size decreased with the increase of x. The alloys exhibited moderate mechanical properties at room temperature, with a yield strength of over 600 MPa, and fractures showed mainly translamellar character. The alloy with x=3.5 exhibited the best deformability at elevated temperature and that with x=1 had superior oxidation resistance at 800 ℃. 展开更多
关键词 TiAl alloy microstructure and properties hot deformation behavior oxidation
下载PDF
Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles 被引量:3
12
作者 Zedong Wang Kaibo Nie +1 位作者 Kunkun Deng Jungang Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第11期1981-1990,共10页
A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.Th... A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate.The finest grain size of~0.30μm is obtained in the sample extruded at 200℃ and 0.1 mm/s.The as-extruded sample displays a strong basal texture intensity,and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240℃.The ultra-high mechanical properties(ultimate tensile strength of 480.2 MPa,yield strength of 462 MPa)are obtained after extrusion at 200℃ with a rate of 0.1 mm/s.Among all strengthening mechanisms for the present composite,the grain refinement contributes the most to the increase in strength.A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites,which explain a mix of brittle-ductile fracture way of the samples. 展开更多
关键词 magnesium matrix composite EXTRUSION microstructure and mechanical properties TEXTURE FRACTURE
下载PDF
Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand 被引量:22
13
作者 王乾坤 LI Peng +2 位作者 田亚坡 CHEN Wei SU Chunyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期996-1001,共6页
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a... The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm. 展开更多
关键词 coral reef sand concrete mechanical properties microstructure interfacial transition zone
下载PDF
Influence of SiO_2 nano-particles on microstructures and properties of Ni-W-P/CeO_2-SiO_2 composites prepared by pulse electrodeposition 被引量:2
14
作者 王军丽 徐瑞东 章俞之 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期839-843,共5页
Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on... Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on microstructures and properties of Ni-W-P/CeO2-SiO2 composites was studied,and the characteristics were assessed by chemical compositions,element distribution,surface morphologies,deposition rate and microhardness.The results indicate that when SiO2 concentration in bath is controlled at 20 g/L,the composites possess the fastest deposition rate,the highest microhardness,compact microstructures,smaller crystallite sizes and uniform distribution of W,P,Ce and Si within Ni-W-P matrix metal.Increasing SiO2 concentration in bath from 10 to 20 g/L leads to the refinement in grain size and the inhomogeneity of microstructures.While when SiO2 concentration is increased to 30 g/L,the crystallite sizes increase again and some bosses with nodulation shape appear on the surface of composites. 展开更多
关键词 pulse electrodeposition NANO-PARTICLE composite microstructure and property
下载PDF
Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic 被引量:2
15
作者 蒲永平 任慧君 +1 位作者 陈维 陈寿田 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第4期442-445,共4页
Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. F... Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength , were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃ ) reaches 4100, the change in relative dielectric constant with temperature is - 10% to 10% within the range of - 15 - 100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm^-1, which can be used in manufacturing high voltage ceramic capacitors 展开更多
关键词 inorganic nonmetallic material dysprosium oxide doping microstructure and properties barium titanate ceramic rare earths
下载PDF
Effect of Trace Sc and Zr on the Mechanical Properties and Microstructure of A1 Alloy 2618 被引量:6
16
作者 Kun YU, Songrui LI and Wenxian LI (Department of Materials Science and Engineering, Central South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期416-420,共5页
An experimental 2618(Al-Cu-Mg-Fe-Ni) alloy added with trace Sc and Zr was prepared by ingot metallurgy (IM) method. The aging behavior of the alloy was studied by Vickers hardness measurement at 200℃ and 300℃. and ... An experimental 2618(Al-Cu-Mg-Fe-Ni) alloy added with trace Sc and Zr was prepared by ingot metallurgy (IM) method. The aging behavior of the alloy was studied by Vickers hardness measurement at 200℃ and 300℃. and the tensile properties of alloy specimens were measured at 20℃, 200℃, 250℃ and 300℃. The microstructure was observed by using optical microscope, SEM and TEM. It was found that the addition of Sc and Zr to 2618 alloy resulted in a primary Al_3(Sc,Zr) phase which could refine the grain because it acts as nuclei of heterogeneous crystallization in the melt during solidification. The secondary Al_3(Sc,Zr) particles were full coherent with matrix and had obvious precipitation hardening effect. They also made the S' phase precipitate more homogeneous. So the strength of alloy increases at both ambient and elevated temperatures without a decrease of ductility. The ductile fracture of alloy occurs by microvoid nucleation, growth and coalescence, so the microvoid coalescence is the dominant fracture mechanism. 展开更多
关键词 Sc ZR Effect of Trace Sc and Zr on the Mechanical properties and Microstructure of A1 Alloy 2618
下载PDF
Production,Properties and Microstructures of Mg-RE-Zn-Zr(RE=MM,Nd) Alloy 被引量:2
17
作者 Kun YU, Wenxian LI and Songrui LICollege of Materials Science and Engineering, Central South University, Changsha 410083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期378-380,共3页
The Mg-MM and Mg-Nd master alloys were prepared through the ingot metallurgy method under the protection of a special flux. The thermodynamic behaviors of different rare earth elements in the molten Mg alloys were inv... The Mg-MM and Mg-Nd master alloys were prepared through the ingot metallurgy method under the protection of a special flux. The thermodynamic behaviors of different rare earth elements in the molten Mg alloys were investigated. Two experimental alloys, Mg-3.0 wt pct MM-0.7 wt pct Zn-0.7 wt pct Zr and Mg-2.8 wt pct Nd-0.7 wt pct Zn-0.7 wt pct Zr, were prepared. The hardness and tensile properties of experimental alloys were measured and the microstructures were observed. The results showed that the rare earth elements could react greatly with the Mg chloride in the flux. The Mg-Nd-Zn-Zr alloy displayed a good aging hardening effect. The dispersed metastable phase ? (Mg3Nd) is an important strengthening phase to improve the tensile properties of this alloy. So the Mg-Nd-Zn-Zr alloy has better tensile properties and elongation than those of the Mg-MM-Zn-Zr alloy, and the ductile fracture character could be observed. The microvoid coalescence is the dominant fracture mechanism in this alloy. 展开更多
关键词 Mg-RE-Zn-Zr alloy Rare earth Microstructures and properties
下载PDF
Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process 被引量:9
18
作者 Xiao-yan Wu Hua-rui Zhang +2 位作者 Huan-liang Chen Li-na Jia Hu Zhang 《China Foundry》 SCIE 2017年第2期138-144,共7页
The evolution of microstructure and mechanical properties of A356 aluminum alloy subjected to hot spinning process has been investigated. The results indicated that the deformation process homogenized microstructure a... The evolution of microstructure and mechanical properties of A356 aluminum alloy subjected to hot spinning process has been investigated. The results indicated that the deformation process homogenized microstructure and improved mechanical properties of the A356 aluminum alloy. During the hot spinning process, eutectic Si particles and Fe-rich phases were fragmented, and porosities were eliminated. In addition, recrystallization of Al matrix and precipitation of Al Si Ti phases occurred. The mechanical property testing results indicated that there was a significant increase of ductility and a decrease of average microhardness in deformed alloy over die-cast alloy. This is attributed to uniform distribution of finer spherical eutectic Si particles, the elimination of casting defects and to the recrystallized finer grain structure. 展开更多
关键词 hot spinning process A356 aluminum alloy microstructure mechanical properties
下载PDF
Microstructures and Properties of 550 MPa Grade High Strength Thin-walled H-beam Steel 被引量:2
19
作者 CHEN Jiping KANG Yonglin +2 位作者 QIAN Jianqing LI Shengzhi QIAN Haifan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1217-1222,共6页
The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-... The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties. 展开更多
关键词 H-beam steel high strength thin-walled vanadium-nitrogen microalloying microstructure and mechanical property strengthening mechanism
下载PDF
Microstructure and Mechanical Properties of Si_3N_4 Composites Containing SiC Platelet 被引量:3
20
作者 Tao WEI Yu ZHOU Tingquan LEI and Yujin WANG (School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第2期151-155,共5页
Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the ... Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented 展开更多
关键词 SIC Microstructure and Mechanical properties of Si3N4 Composites Containing SiC Platelet MPA
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部