Phase-field modelling of microstructural evolution in polycrystalline systems with phase-associated grains has largely been confined to continuum-field models.In this study,a multiphase-field approach,with a provision...Phase-field modelling of microstructural evolution in polycrystalline systems with phase-associated grains has largely been confined to continuum-field models.In this study,a multiphase-field approach,with a provision for introducing grain boundary and interphase diffusion,is extended to analyse concurrent grain growth and coarsening in multicomponent polycrystalline microstructures with chemically-distinct grains.The effect of the number of phases and components on the kinetics of evolution is investigated by considering binary and ternary systems of duplex and triplex microstructures,along with a single phase system.It is realised that the mere increase in the number of phases minimises the rate of concurrent grain growth and coarsening.However,the effect of components is substantially dependent on the respective kinetic coefficients.This work unravels that the disparity in the influence of phases and components is primarily due to the corresponding change introduced in the transformation mechanism.While the raise in number of phases convolutes the diffusion paths,the increase in number of component effects the rate of evolution through the interdiffusion,which introduces interdependency in the diffusing chemical-species.Additionally,the role of phase-fractions on the transformation rate of triplex microstructure is studied,and correspondingly,the interplay of interface-and diffusion-governed evolution is elucidated.A representative evolution of three-dimensional triplex microstructure with equal phase-fraction is comparatively analysed with the evolution of corresponding two-dimensional setup.展开更多
The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination ...The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels.展开更多
基金financial support of the German Research Foundation(DFG)under the project AN 1245/1the support of the BMBF project‘Ker Solife100’the Helmholtz programme‘Renewable energies’(35.14.01)。
文摘Phase-field modelling of microstructural evolution in polycrystalline systems with phase-associated grains has largely been confined to continuum-field models.In this study,a multiphase-field approach,with a provision for introducing grain boundary and interphase diffusion,is extended to analyse concurrent grain growth and coarsening in multicomponent polycrystalline microstructures with chemically-distinct grains.The effect of the number of phases and components on the kinetics of evolution is investigated by considering binary and ternary systems of duplex and triplex microstructures,along with a single phase system.It is realised that the mere increase in the number of phases minimises the rate of concurrent grain growth and coarsening.However,the effect of components is substantially dependent on the respective kinetic coefficients.This work unravels that the disparity in the influence of phases and components is primarily due to the corresponding change introduced in the transformation mechanism.While the raise in number of phases convolutes the diffusion paths,the increase in number of component effects the rate of evolution through the interdiffusion,which introduces interdependency in the diffusing chemical-species.Additionally,the role of phase-fractions on the transformation rate of triplex microstructure is studied,and correspondingly,the interplay of interface-and diffusion-governed evolution is elucidated.A representative evolution of three-dimensional triplex microstructure with equal phase-fraction is comparatively analysed with the evolution of corresponding two-dimensional setup.
基金the China National Funds for Distinguished Young Scientists(Grant No.51325401)the National Natural Science Foundation of China(Grant No.51474156 and U1660201)the National High Technology Research and Development Program of China(Grant No.2015AA042504)for grant and financial support
文摘The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels.