We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcrack...We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology.展开更多
In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were ana...In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased.展开更多
Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study th...Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study the extraction of key failure parameters. This review summarizes the recent progresses in the study of the internal movement of granular materials, inhomogeneous deformation of composite materials, and stress intensity factor around a crack front in static and fatigue states using DVC. To elaborate on the technique's potential, we discussed the accuracy and efficiency of the algorithm and the acquisition of real microstructure data within the material under a complex environment.展开更多
In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the co...In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.展开更多
The change in surface damage/microstructures and its effects on the hydrogen(H)isotope/helium(He)dynamic behavior are the key factors for investigating issues of tungsten(W)-based plasma-facing materials(PFMs)in fusio...The change in surface damage/microstructures and its effects on the hydrogen(H)isotope/helium(He)dynamic behavior are the key factors for investigating issues of tungsten(W)-based plasma-facing materials(PFMs)in fusion such as surface erosion,H/He retention and tritium(T)inventory.Complex surface damage/microstructures are introduced in W by high-temperature plasma irradiation and new material design,typically including pre-damage and multi-ion co-deposition induced structures,solute elements and related composites,native defects like dislocations and interfaces,and nanostructures.Systematic experimental and theoretical researches were performed on H isotope/He retention in complex W-based materials in the past decades.In this review,we aim to provide an overview of typical surface damage/microstructures and their effects on H/He retention in W,both in the experiment and multiscale modeling.The distribution/state,dynamics evolution,and interaction with defects/microstructures of H/He are generally summarized at different scales.Finally,the current difficulties,challenges and future directions are also discussed about H/He retention in complex W-based PFMs.展开更多
基金Project supported by the National Major Science & Technology Project of China (Grant No. 2016ZX05020-003).
文摘We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology.
基金Funded by the National Natural Science Foundation of China(No.51574201)the Research and Innovation Team of Provincial U niversities in Sichuan(18TD0014)the Excellent Youth Foundat ion of Sichuan Scientific Committee(2019JDJQ0037)
文摘In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased.
基金supported by the National Natural Science Foundation of China (11722221, 11272305, and 11472265)the National Key Research and Development Program of China (2017YFA0403800 and 2017YFB0702000)the Anhui Provincial Natural Science Foundation (1508085MA17)
文摘Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study the extraction of key failure parameters. This review summarizes the recent progresses in the study of the internal movement of granular materials, inhomogeneous deformation of composite materials, and stress intensity factor around a crack front in static and fatigue states using DVC. To elaborate on the technique's potential, we discussed the accuracy and efficiency of the algorithm and the acquisition of real microstructure data within the material under a complex environment.
基金supported within the framework of the Basic Research Project of the Yunnan Province-Young Program(No.2019FD097)Agricultural Joint Special Project of the Yunnan Province-General Program(No.202101BD070001-118).
文摘In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.11975018,11775254 and 11534012)the National Magnetic Confinement Fusion Energy Research Project(Grant No.2018YEF0308100)+2 种基金the Science Challenge Project(Grant No.TZ2018004)the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(Grant No.2016386)Director Grants of Hefei Institutes of Physics Science,Chinese Academy of Sciences(CASHIPS).
文摘The change in surface damage/microstructures and its effects on the hydrogen(H)isotope/helium(He)dynamic behavior are the key factors for investigating issues of tungsten(W)-based plasma-facing materials(PFMs)in fusion such as surface erosion,H/He retention and tritium(T)inventory.Complex surface damage/microstructures are introduced in W by high-temperature plasma irradiation and new material design,typically including pre-damage and multi-ion co-deposition induced structures,solute elements and related composites,native defects like dislocations and interfaces,and nanostructures.Systematic experimental and theoretical researches were performed on H isotope/He retention in complex W-based materials in the past decades.In this review,we aim to provide an overview of typical surface damage/microstructures and their effects on H/He retention in W,both in the experiment and multiscale modeling.The distribution/state,dynamics evolution,and interaction with defects/microstructures of H/He are generally summarized at different scales.Finally,the current difficulties,challenges and future directions are also discussed about H/He retention in complex W-based PFMs.