Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on th...Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on them. The elements and substrates that really play a role for nucleation are yet unknown. Until now there is very little knowledge about the fundamentals of nucleation, such as composition and morphology of nuclei. In this work we utilized EN-GJL-200 as a base material and examined several produced specimens. The specimens were cast with and without inoculants and quenched at different solidification states. Specimens were also examined with a high and low oxygen concentration, but the results showed that different oxygen contents have no influence on the nucleation in cast iron melts. Our research was focused on the microscopic examination and phase-field simulations. For studying the samples we applied different analytical methods, where SEM-EDS, -WDS were proved to be most effective. The simulations were conducted by using the software MICRESS, which is based on a multiphase-field model and has been coupled directly to the TCFE3 thermodynamic database from TCAB. On the basis of the experimental investigations a nucleation mechanism is proposed, which claims MnS precipitates as the preferred site for graphite nucleation. This theory is supported by the results of the phase-field simulations.展开更多
The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside...The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside the casting was recorded using thermocouples during the solidification process.The effects of the cooling rate and Zr content on the grain size of the Mg-Gd-Y-Zr alloy were studied.The results showed that the grain size decreased with an increase in the cooling rate and Zr content.Based on the experimental data,a quantitative model for calculating the heterogeneous nucleation rate was developed,and the model parameters were determined.The evolution of the solidification microstructure was simulated using the CA method,where the quantitative nucleation model was used and a solute partition ceoefficient was introduced to deal with the solute trapping in front of the solid-liquid(S/L)interface.The simulation results of the grain size were in good agreement with the experimental data.The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6-11.0℃·s^(-1),which was verified indirectly by the experimental data.展开更多
SiCp/A1-Mg metal matrix composites were manufactured by semi-solid stirring technique. The composites were remelted and then solidified under different pressures to study the solidification behavior of composites by d...SiCp/A1-Mg metal matrix composites were manufactured by semi-solid stirring technique. The composites were remelted and then solidified under different pressures to study the solidification behavior of composites by differential thermal analysis, scanning electron microscopy, and transmission electron microscopy. The experimental results show that SiCp reinforcements can not act as heterogeneous nucleation sites for c^(A1), and an interfacial layer composed of MgA1204 spinel and Si-rich phase existed at A1/SiCp interface. The undercooling of the matrix alloy was improved by the pressure applied, resulting in the grain of matrix alloy refining. The X-ray diffraction pattern of composites testified that the matrix alloy exhibited a certain preferred orientation during solidification. In addition, with increasing the pressure for solidification, the pored defects in the composites decreased, while the relative density, hardness and compressive strength increased. Therefore, the microstructure and mechanical properties of the composites were improved by pressure placed during the solidification of SiCp/A1-Mg composites.展开更多
Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, ...Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, the liquidus temperatures TL of the alloys decreased from 1498.5 to 1472.5 K; the solidus temperatures TS of them increased from 1353.2 to 1358.3 K; and the nucleation undercooling of the alloy melts cooled at the rate of 40 K/min decreased from 122.8 to 95.9 K, resulting in the solidification structures consisting of Nd_2Fe_(14)B, Fe_3B, α-Fe, Nd1.1Fe4B4 and TiC nanocrystallines. Furthermore, the Nd_9Fe_(85–x)Ti_4C_2B_x(x=11, 13, 15) bulk alloys in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and their solidification characteristics and solidification structures under sub-rapidly cooling rate were investigated. The results showed that partially amorphous structures were obtained in the as-cast bulk alloys and the amount of amorphous decreased with the increase of the B content. By annealing the as-cast bulk alloys at 923 K for 10 min, the nanocomposite microstructures composed with Nd_2Fe_(14)B, Fe_3B and α-Fe nanocrystallines, which showed a single-phase hard magnetic behavior and enhanced magnetic properties, were achieved.展开更多
Al-27%Cu-5.3%Si ternary eutectic alloy was melted using a YAG laser and then solidified while being acoustically levitated. A maximum undercooling to 195 K (0.24 TL) was achieved with a cooling rate of 76 K/s. The sol...Al-27%Cu-5.3%Si ternary eutectic alloy was melted using a YAG laser and then solidified while being acoustically levitated. A maximum undercooling to 195 K (0.24 TL) was achieved with a cooling rate of 76 K/s. The solidification microstructure was composed of (Al+θ+Si) ternary eutectics and (Al+θ) pseudobinary eutectics. During acoustic levitation, the (Al+θ+Si) ternary eutectics are refined and the (Al+θ) pseudobinary eutectics have morphological diversity. On the surface of the alloys, surface oscillations and acoustic streaming promote the nucleation of the three eutectic phases and expedite the cooling process. This results in the refinement of the ternary eutectic microstructure. During experiments, the reflector decreases with increasing alloy temperature, and the levitation distance always exceeds the resonant distance. Because of the acoustic radiation pressure, the melted alloy was flattened, and deformation increases with increasing sound pressure. The maximum aspect ratio achieved was 6.64, corresponding to a sound pressure of 1.8×104 Pa.展开更多
Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution...Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution were revealed and further elucidated in terms of the heat flow mode, nucleation and growth processes under different solidification conditions. With the increase of undercooling, columnar dendrite is replaced by dispersive structure due to the immiscible effect. In contrast, equiaxed dendrite forms in spray cast alloy due to multiple nucleation events and becomes thinner for the case of higher cooling rate. Ascribed to the enhanced non-equilibrium effect and insufficient period for collision and coagulation processes between separated droplets, fine globular dispersion appears upon the diameter of spray casting reaching 4 mm. As for the melt-spun ribbon with the highest cooling rate, a single-phase solid solution microstructure with refined grain of cellular morphology can be obtained, which is attributed to the suppression of liquid phase separation by instant solidification.展开更多
文摘Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on them. The elements and substrates that really play a role for nucleation are yet unknown. Until now there is very little knowledge about the fundamentals of nucleation, such as composition and morphology of nuclei. In this work we utilized EN-GJL-200 as a base material and examined several produced specimens. The specimens were cast with and without inoculants and quenched at different solidification states. Specimens were also examined with a high and low oxygen concentration, but the results showed that different oxygen contents have no influence on the nucleation in cast iron melts. Our research was focused on the microscopic examination and phase-field simulations. For studying the samples we applied different analytical methods, where SEM-EDS, -WDS were proved to be most effective. The simulations were conducted by using the software MICRESS, which is based on a multiphase-field model and has been coupled directly to the TCFE3 thermodynamic database from TCAB. On the basis of the experimental investigations a nucleation mechanism is proposed, which claims MnS precipitates as the preferred site for graphite nucleation. This theory is supported by the results of the phase-field simulations.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701204)the National Science and Technology Major Project of China(No.2017ZX04006001)the National Natural Science Foundation of China(No.U1737208)。
文摘The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside the casting was recorded using thermocouples during the solidification process.The effects of the cooling rate and Zr content on the grain size of the Mg-Gd-Y-Zr alloy were studied.The results showed that the grain size decreased with an increase in the cooling rate and Zr content.Based on the experimental data,a quantitative model for calculating the heterogeneous nucleation rate was developed,and the model parameters were determined.The evolution of the solidification microstructure was simulated using the CA method,where the quantitative nucleation model was used and a solute partition ceoefficient was introduced to deal with the solute trapping in front of the solid-liquid(S/L)interface.The simulation results of the grain size were in good agreement with the experimental data.The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6-11.0℃·s^(-1),which was verified indirectly by the experimental data.
基金Funded by the National Key Natural Science Foundation of China(No.2006CB605203-3)the National Natural Science Foundation of China(No.50671030)
文摘SiCp/A1-Mg metal matrix composites were manufactured by semi-solid stirring technique. The composites were remelted and then solidified under different pressures to study the solidification behavior of composites by differential thermal analysis, scanning electron microscopy, and transmission electron microscopy. The experimental results show that SiCp reinforcements can not act as heterogeneous nucleation sites for c^(A1), and an interfacial layer composed of MgA1204 spinel and Si-rich phase existed at A1/SiCp interface. The undercooling of the matrix alloy was improved by the pressure applied, resulting in the grain of matrix alloy refining. The X-ray diffraction pattern of composites testified that the matrix alloy exhibited a certain preferred orientation during solidification. In addition, with increasing the pressure for solidification, the pored defects in the composites decreased, while the relative density, hardness and compressive strength increased. Therefore, the microstructure and mechanical properties of the composites were improved by pressure placed during the solidification of SiCp/A1-Mg composites.
基金Project supported by National Natural Science Foundation of China(51174121,51274125)Zhejiang Province Science and Technology Innovation Team of Key Projects(2010R50016-30)
文摘Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, the liquidus temperatures TL of the alloys decreased from 1498.5 to 1472.5 K; the solidus temperatures TS of them increased from 1353.2 to 1358.3 K; and the nucleation undercooling of the alloy melts cooled at the rate of 40 K/min decreased from 122.8 to 95.9 K, resulting in the solidification structures consisting of Nd_2Fe_(14)B, Fe_3B, α-Fe, Nd1.1Fe4B4 and TiC nanocrystallines. Furthermore, the Nd_9Fe_(85–x)Ti_4C_2B_x(x=11, 13, 15) bulk alloys in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and their solidification characteristics and solidification structures under sub-rapidly cooling rate were investigated. The results showed that partially amorphous structures were obtained in the as-cast bulk alloys and the amount of amorphous decreased with the increase of the B content. By annealing the as-cast bulk alloys at 923 K for 10 min, the nanocomposite microstructures composed with Nd_2Fe_(14)B, Fe_3B and α-Fe nanocrystallines, which showed a single-phase hard magnetic behavior and enhanced magnetic properties, were achieved.
基金supported by the National Natural Science Foundation of China (50971105)
文摘Al-27%Cu-5.3%Si ternary eutectic alloy was melted using a YAG laser and then solidified while being acoustically levitated. A maximum undercooling to 195 K (0.24 TL) was achieved with a cooling rate of 76 K/s. The solidification microstructure was composed of (Al+θ+Si) ternary eutectics and (Al+θ) pseudobinary eutectics. During acoustic levitation, the (Al+θ+Si) ternary eutectics are refined and the (Al+θ) pseudobinary eutectics have morphological diversity. On the surface of the alloys, surface oscillations and acoustic streaming promote the nucleation of the three eutectic phases and expedite the cooling process. This results in the refinement of the ternary eutectic microstructure. During experiments, the reflector decreases with increasing alloy temperature, and the levitation distance always exceeds the resonant distance. Because of the acoustic radiation pressure, the melted alloy was flattened, and deformation increases with increasing sound pressure. The maximum aspect ratio achieved was 6.64, corresponding to a sound pressure of 1.8×104 Pa.
基金Project(SKLSP201118)supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,ChinaProjects(51431008,51461032)supported by the National Natural Science Foundation of China+1 种基金Project(51125002)supported by the China National Natural Science Foundation for Distinguished Young ScholarsProject(GJJ14504)supported by the Education Department of Jiangxi Province,China
文摘Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution were revealed and further elucidated in terms of the heat flow mode, nucleation and growth processes under different solidification conditions. With the increase of undercooling, columnar dendrite is replaced by dispersive structure due to the immiscible effect. In contrast, equiaxed dendrite forms in spray cast alloy due to multiple nucleation events and becomes thinner for the case of higher cooling rate. Ascribed to the enhanced non-equilibrium effect and insufficient period for collision and coagulation processes between separated droplets, fine globular dispersion appears upon the diameter of spray casting reaching 4 mm. As for the melt-spun ribbon with the highest cooling rate, a single-phase solid solution microstructure with refined grain of cellular morphology can be obtained, which is attributed to the suppression of liquid phase separation by instant solidification.