期刊文献+
共找到8,013篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
1
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
2
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties microstructure
下载PDF
Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg-Zn-Gd-Ca-Mn alloys
3
作者 Yifan Song Xihai Li +5 位作者 Jinliang Xu Kai Zhang Yaozong Mao Hong Yan Huiping Li Rongshi Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2208-2220,共13页
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all... The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement. 展开更多
关键词 Mg-Zn-Gd-Ca-Mn alloy annealing treatment microstructure TEXTURE dynamic recrystallization mechanical properties
下载PDF
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
4
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 TiAl alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
5
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy alloyING microstructure mechanical properties heat treatment
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
6
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-Zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance microstructure
下载PDF
Microstructure and mechanical properties of new Mg-Zn-Y-Zr alloys with high castability and ignition resistance
7
作者 T.A.Koltygina V.E.Bazhenov +5 位作者 A.V.Koltygin A.S.Prosviryakov N.Y.Tabachkova I.I.Baranov A.A.Komissarov A.I.Bazlov 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2714-2726,共13页
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z... Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase. 展开更多
关键词 metals and alloys liquid-solid reactions microstructure FLUIDITY mechanical properties corrosion transmission electron mi-croscopy
下载PDF
Effect of annealing temperature on microstructure and mechanical properties of Mg-Zn-Zr-Nd alloy with large final rolling deformation
8
作者 ZHANG Jin-hai NIE Kai-bo +2 位作者 ZHANG Jin-hua DENG Kun-kun LIU Zhi-long 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1774-1789,共16页
In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was inve... In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity. 展开更多
关键词 Mg-Zn-Zr-Nd alloy large final rolling deformation annealing temperatures microstructures mechanical properties
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
9
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−Zn−Mg−Cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Microstructure homogeneity and mechanical properties of laser-arc hybrid welded AZ31B magnesium alloy
10
作者 Yongkang Gao Kangda Hao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjing Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1986-1995,共10页
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase... Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics. 展开更多
关键词 Magnesium alloy Laser-arc hybrid welding microstructure homogeneity mechanical properties
下载PDF
Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy
11
作者 Xiaoyu Cai Fukang Chen +2 位作者 Bolun Dong Sanbao Lin Chunli Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3180-3192,共13页
Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium all... Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2). 展开更多
关键词 GTA Additive manufacturing AZ91D magnesium alloy microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of continuous drive friction welded Ti_(2)AlNb alloy under different rotational rates
12
作者 Zhi-qiang BU Xiu-ping MA +3 位作者 Jia-yun WU Zhen LÜ Hu CHEN Jin-fu LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3221-3232,共12页
Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.I... Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test. 展开更多
关键词 Ti_(2)AlNb alloy continuous drive friction welding microstructure mechanical properties
下载PDF
Improvement of microstructure and mechanical properties of Al−Cu−Li−Mg−Zn alloys through water-cooling centrifugal casting technique
13
作者 Qing-bo YANG Wen-jing SHI +4 位作者 Wen LIU Miao WANG Wen-bo WANG Li-na JIA Hu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3486-3503,共18页
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime... The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases. 展开更多
关键词 Al−Cu−Li−Mg−Zn alloy water-cooling centrifugal casting microstructure mechanical properties segregation behavior
下载PDF
Effect of Ni on microstructure and mechanical properties of Al−Mg−Si alloy for laser powder bed fusion
14
作者 Yi-mou LUO Jian-ying WANG +6 位作者 Tao WEN Fei-peng YANG Meng-zhen ZHU Na HE Jian-ming ZHENG Ling SHAN Hai-lin YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3521-3535,共15页
The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)in... The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%. 展开更多
关键词 laser powder bed fusion Al−Mg−Si alloy microstructural evolution mechanical properties strengthening mechanism
下载PDF
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
15
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy 被引量:15
16
作者 王博 陈先华 +2 位作者 潘复生 毛建军 方勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2481-2489,共9页
The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electro... The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy. 展开更多
关键词 AA5052 aluminum alloy cold rolling ANNEALING microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of Mg,Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys 被引量:13
17
作者 李劲风 刘平礼 +2 位作者 陈永来 张绪虎 郑子樵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2103-2112,共10页
To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results show... To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results showed that 1%of lower Li content restricted the strengthening effect of increasing Cu content,while simultaneous increase in Cu and Li contents contributed effectively to the enhancement of strength.The alloys were mainly strengthened by plenty of fine and well dispersed TI(Al2CuLi)precipitates.There were also some minor precipitates of θ'(Al2Cu) and δ'(Al3Li),which became less in number density,even disappeared during the aging process.Meanwhile,higher Li content favored the formation θ' and δ' and a small amount of S"(Al2CuMg) phases.In addition,strengthening effect and microstructure variation were analyzed through total non-solution mole fraction of Cu and Li and their mole ratio.To obtain Al-Li alloy with super-high strength,the total mole fractions of Cu and Li should be increased,and their mole ratios should also be kept at a certain high level. 展开更多
关键词 Al-Li alloy PRECIPITATE Cu/Li mole ratio microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation 被引量:10
18
作者 项南 宋仁国 +3 位作者 赵坚 李海 王超 王芝秀 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3323-3328,共6页
The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc o... The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings. 展开更多
关键词 6063 aluminium alloy micro-arc oxidation microstructure mechanical properties nanoadditive
下载PDF
Microstructure and mechanical properties of TC21 titanium alloy after heat treatment 被引量:13
19
作者 石志峰 郭鸿镇 +1 位作者 韩锦阳 姚泽坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2882-2889,共8页
Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical propertie... Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical properties can be obtained by adopting air cooling after forging followed by heat treatment of (900℃, 1 h, AC)+(590 ℃, 4 h, AC). Deformation in single β field produces pan-like prior fl grains, while annealing in single fl field produces equiaxed prior fl grains. Cooling rate after forging or annealing in single fl field and the subsequent annealing on the top of α+β field determine the content and morphology of coarse a plates. During aging or the third annealing, fine secondary a plates precipitate. Both ultimate strength and yield strength decrease with the content increase of coarse a plates. Decreasing effective slip length and high crack propagation resistance increase the plasticity. The crisscross coarse a plates with large thickness are helpful to enhance the fracture toughness. 展开更多
关键词 TC21 titanium alloy heat treatment microstructure mechanical properties
下载PDF
Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy 被引量:6
20
作者 温彤 刘诗尧 +2 位作者 陈世 刘澜涛 杨臣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期397-404,共8页
A device for superimposing vibration on workpiece in both horizontal and vertical directions during tungsten-arc inert gas (TIG) welding was developed, with maximum power output of 2 kW at frequency of 15 kHz. AZ31 ... A device for superimposing vibration on workpiece in both horizontal and vertical directions during tungsten-arc inert gas (TIG) welding was developed, with maximum power output of 2 kW at frequency of 15 kHz. AZ31 sheets with thickness of I and 3 mm were used in the vibratory welding. Microstructures along with the mechanical properties of the weld joints under different vibrating conditions (vibration direction, vibration amplitude and groove angle) were examined. It is observed that the grain size in welding zone decreases remarkably with the application of vibration, while the amount of second phase β-Mg_17Al_12 within the zone decreases slightly; meanwhile, microhardness of the weld joints, macroscopic tensile strength and elongation of the weldment increase. Vibration, especially the one along vertical direction, has more impact on the performance of the thick weldments. Influence of vibration on mierostructure and mechanical properties of weldments is affected by wave energy transferring in the melt and depends on the processing and geometric parameters including amplitude and direction of vibration, thickness, and groove angles. 展开更多
关键词 magnesium alloy TIG welding VIBRATION microstructure mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部