期刊文献+
共找到75,202篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
1
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization microhardness ALLOYS material characterization
下载PDF
Effects of cooling rate on microstructure and microhardness of directionally solidified Galvalume alloy
2
作者 Ji-peng Li De-gao Qiao +4 位作者 Jian Li Xiao-yang Luo Peng Peng Xian-tao Yan Xu-dong Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第3期213-220,共8页
The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experim... The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experiments at different withdrawal speeds(5,10,20,50,100,200,and 400μm·s^(-1)).The results show that the microstructure of directionally solidified Galvalume alloys is composed of primary Al dendrites,Si-rich phase and(Zn-Al-Si)ternary eutectics at the withdrawal speed ranging from 5 to 400μm·s^(-1).As the withdrawal speed increases,the segregation of Si element intensifies,resulting in an increase in the area fraction of the Si-rich phase.In addition,the primary Al dendrites show significant refinement with an increase in the withdrawal speed.The relationship between the primary dendrite arm spacing(λ_(1))and the thermal parameters of solidification is obtained:λ_(1)=127.3V^(-0.31).Moreover,as the withdrawal speed increases from 5 to 400μm·s^(-1),the microhardness of the alloy increases from 90 HV to 151 HV.This is a combined effect of grain refinement and second-phase strengthening. 展开更多
关键词 Galvalume alloy directional solidification microstructure length scale microhardness
下载PDF
Influence of heat input on the microhardness and microstructure of the welding interface between nickel-based alloy and low-alloy steel
3
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第3期33-38,共6页
The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work... The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work,NA filler metal was deposited on LA substrate under different heat inputs by tungsten inert gas(TIG) welding.Microstructural characterization and microhardness tests were carried out near the prepared cladding interfaces.Optical and scanning electron microscopes show the lack of evident hardening transition layer along the welding interface.As the heat input increases,the mean hardness of the deposited layer also increases remarkably due to the rising dilution rate.Microstructural characterization shows a significant composition gradient across the cladding interface,but the diffusion gradient is limited to a small range.Under high heat input,a planar grain zone is generated along the interface due to the large temperature gradient across the interface region. 展开更多
关键词 welding interface heat input microstructure microhardness
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
4
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input microstructure hardness
下载PDF
Microstructure and microhardness of aluminium alloy with underwater and in-air wire-feed laser deposition 被引量:1
5
作者 Ning Guo Qi Cheng +5 位作者 Yunlong Fu Yang Gao Hao Chen Shuai Zhang Xin Zhang Jinlong He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期670-677,共8页
This study carried out the underwater and in-air wire-feed laser deposition of an aluminium alloy with a thin-walled tubular structure. For both the underwater and in-air deposition layers, both were well-formed and i... This study carried out the underwater and in-air wire-feed laser deposition of an aluminium alloy with a thin-walled tubular structure. For both the underwater and in-air deposition layers, both were well-formed and incomplete fusion, cracks, or other defects did not exist.Compared with the single-track deposition layer in air, the oxidation degree of the underwater single-track deposition layer was slightly higher.In both the underwater and in-air deposition layers, columnar dendrites nucleated close to the fusion line and grew along the direction of the maximum cooling rate in the fusion region(FR), while equiaxed grains formed in the deposited region(DR). As the environment changed from air to water, the width of DR and height of FR decreased, but the deposition angle and height of DR increased. The grain size and ratio of the high-angle boundaries also decreased due to the large cooling rate and low peak temperature in the water environment.Besides, the existence of a water environment benefitted the reduction of magnesium element burning loss in the DR. The microhardness values of the underwater deposition layer were much larger than those of the in-air layer, owing to the fine grains and high magnesium content. 展开更多
关键词 wire-feed laser deposition microstructure magnesium element burn loss microhardness
下载PDF
Friction welding influence on microstructure,microhardness and hardness behavior of CrNiMo steel(AISI 316)
6
作者 Ammar Jabbar Hassan Billel Cheniti +3 位作者 Brahim Belkessa Taoufik Boukharouba Djamel Miroud Nacer-Eddine Titouche 《China Welding》 CAS 2023年第3期21-27,共7页
For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MP... For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions. 展开更多
关键词 friction welding austenitic stainless steel microstructure microhardness HARDNESS
下载PDF
Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys 被引量:6
7
作者 张传臣 张田仓 +1 位作者 季亚娟 黄继华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3540-3544,共5页
A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicate... A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicated that the peak temperature exceeded theβ-transus temperature at the weld interface during linear friction welding. TC4 side was mainly composed of martensiteα′phase with random distribution and it was singleβfor that of TC17. In the thermomechanically affected zones of TC4 and TC17, the structure undergoes severe plastic deformation and re-orientation, yet without altering the phase fractions. After PWHT, in the weld zone of TC4 alloy, the phase transformationα′→α+βoccurred and the acicularαwas coarsened, which resulted in a decrease in hardness. In the weld zone of TC17 alloy, fineαphase precipitated at the grain boundary and withinβgrains, which resulted in a sharp increase in hardness. 展开更多
关键词 linear friction welding Ti alloys heat treatments microstructure microhardness
下载PDF
Effect of applied pressure and ultrasonic vibration on microstructure and microhardness of Al-5.0Cu alloy
8
作者 张杨 李风雷 +3 位作者 罗执 赵愈亮 夏伟 张卫文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2296-2303,共8页
The squeeze pressure field and power ultrasonic field were applied during the conventional casting process of Al-5.0Cu alloy simultaneously. The effects of individual squeeze pressure or power ultrasonic and their cou... The squeeze pressure field and power ultrasonic field were applied during the conventional casting process of Al-5.0Cu alloy simultaneously. The effects of individual squeeze pressure or power ultrasonic and their coupling on the microstructures and microhardness of Al-5.0Cu alloy were studied by optical microscopy, scanning electron microscopy, image analysis and micro Vickers hardness test. The results show that compared with the conventional casting, refined microstructures, homogeneous distribution of α(Al) and θ(Al2Cu) and improved microhardness can be obtained when squeeze pressure or power ultrasonic is applied individually. For the case of combined fields, both the treated region and the improvement of microstructure and properties can be enhanced. 展开更多
关键词 Al-Cu alloy squeeze pressure field power ultrasonic field combined field microstructure microhardness
下载PDF
Effect of growth rate on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B alloy 被引量:2
9
作者 Zhi-ping Li Hong-ying Xia +5 位作者 Liang-shun Luo Bin-bin Wang Liang Wang Yan-qing Su Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE 2020年第4期293-300,共8页
The effect of growth rates (V=2-50 μm·s-1) on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B (at.%) alloy at a constant temperature gradient (G=18 K·mm-1) was ... The effect of growth rates (V=2-50 μm·s-1) on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B (at.%) alloy at a constant temperature gradient (G=18 K·mm-1) was investigated. Results indicated that β phase was the primary phase of the directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B alloy. As the growth rate increases, the solid/liquid interface turns from cellular growth to dendric growth. The interlamellar spacing (λs) decreases with the increase of growth rate according to the relationship of λs=3.39V -0.31. The solidification segregation occurs due to the enrichment of β-stabilizing element Nb, Cr in primary β phase during solidification;moreover, the degree of the segregation increases with the growth rate, resulting in the emergence of B2 phase in lamellar colonies at high growth rates. The microhardness (Hv) grows with the growth rate based on the equation of HV=328.69V 0.072, which mainly attributes to the microstructure refinement. 展开更多
关键词 beta-solidifying TiAl alloys directional solidification microstructure evolution microstructure control microhardness
下载PDF
Microstructure and microhardness of directionally solidified and heat-treated Nb-Ti-Si based ultrahigh temperature alloy 被引量:5
10
作者 郭海生 郭喜平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1283-1290,共8页
Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the mic... Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the microstructures become uniform, the long and big primary (Nb,X)sSi3 (X represents Ti and Hf elements) plates in the DS specimens are broken into small ones, and the eutectic cells lose their lamellar morphology and their interfaces become blurry after heat-treatment. Meanwhile, the (Nb,X)sSi3 slices in the eutectic cells of the DS specimens coarsen obviously after heat-treatment. Homogenizing and aging treatments could effectively eliminate elemental microsegregation, and the segregation ratios of all elements in niobium solid solution (Nbss) in different regions tend to 1. After heat-treatment, the microhardness of retained eutectic cells increases evidently, and the maximum value reaches HV1 404.57 for the specimen directionally solidified with a withdrawing rate of 100 μm/s and then heat-treated at (1 500 ℃, 50 h) + (1 100 ℃, 50 h), which is 72.8 % higher than that under DS condition. 展开更多
关键词 Nb-Ti-Si based ultrahigh temperature alloy homogenizing treatment aging treatment microstructural evolution microhardness
下载PDF
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map 被引量:7
11
作者 Zhengtao Gan Hengyang Li +5 位作者 Sarah J.Wolff Jennifer L.Bennett Gregory Hyatt Gregory J.Wagner Jian Cao Wing Kam Liu 《Engineering》 SCIE EI 2019年第4期730-735,共6页
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur... To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties. 展开更多
关键词 Additive manufacturing Data science MULTIPHYSICS modeling SELF-ORGANIZING map microstructure microhardness NI-BASED SUPERALLOY
下载PDF
Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy 被引量:4
12
作者 Chang-qing Huang Jia-xing Liu Xiao-dong Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第9期1140-1150,共11页
The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simul... The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simulations and electron-backscattered diffraction and Vickers microhardness experiments. The results of a misorientation angle study show that an increase in the deformation temperature and strain rate promoted the transformation of low-angle grain boundaries to high-angle grain boundaries, which contributed to dynamic recrystallization. The effect of the deformation parameters on the texture and its evolution during the recrystallization process was explored on the basis of the orientation distribution function. The results demonstrate that the deformed samples mainly exhibited the features of type A, B, and B textures. The formation and growth of the recrystallized grains clearly affected the texture evolution. The microhardness results show that the variation of the microhardness was closely related to the temperature, strain rate, and dynamic recrystallization. 展开更多
关键词 microstructure TEXTURE MISORIENTATION dynamic RECRYSTALLIZATION microhardness
下载PDF
Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy 被引量:14
13
作者 Zhen-zhen XU Zhi-qiang DONG +2 位作者 Zhao-hui YU Wen-ke WANG Jian-xun ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1277-1289,共13页
The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-wel... The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone. 展开更多
关键词 microhardness microstructure misorientation angle NON-UNIFORMITY welding speed
下载PDF
Effect of sodium lauryl sulphate on microstructure, corrosion resistance and microhardness of electrodeposition of Ni-Co3O4 composite coatings 被引量:3
14
作者 K.O.NAYANA S.RANGANATHA +1 位作者 H.N.SHUBHA M.PANDURANGAPPA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2371-2383,共13页
Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency... Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test. 展开更多
关键词 nickel electrodeposition cobalt oxide composite coating microstructure corrosion resistance microhardness
下载PDF
Dependency of microstructure and microhardness on withdrawal rate of Ti-43Al-2Cr-2Nb alloy prepared by electromagnetic cold crucible directional solidification 被引量:2
15
作者 Yong-zhe Wang Hong-sheng Ding +2 位作者 Rui-run Chen Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE 2016年第4期289-293,共5页
The intermetallic Ti-43Al-2Cr-2Nb(at.%)alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V)ranging from 0.2 to 1.0 mm·min^(-1),at a constant temperature gradie... The intermetallic Ti-43Al-2Cr-2Nb(at.%)alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V)ranging from 0.2 to 1.0 mm·min^(-1),at a constant temperature gradients(G=18 K·mm^(-1)).Macrostructures of the alloy were observed by optical microscopy.Microstructures of the alloy were characterized by scanning electron microscopy(SEM)in back-scattered electron mode and transmission electron microscopy.Results showed that morphologies of macrostructure depend greatly on the applied withdrawal rate.Continuous columnar grains can be obtained under slow withdrawal rates ranging from 0.2 to 0.6 mm·min^(-1).The microstructure of the alloy was composed ofα_(2)/γlamellar structures and a small number of mixtures of B2 phases and blockyγphases.The columnar grain size(d)and interlamellar spacing(λ)decrease with an increasing withdrawal rate.The effect of withdrawal rate on microhardness was also investigated.The microhardness of the directional y solidified Ti-43Al-2Cr-2Nb alloy increases with an increase in withdrawal rate.This is mainly attributed to the increase of B2 andα_(2) phases as well as the refinement of lamellae. 展开更多
关键词 TiAl-based alloys directional solidification microstructure microhardness
下载PDF
Correlation Between Microhardness and Microstructure of Anodic Film on 2024 Aluminum Alloy
16
作者 张培 ZUO Yu +2 位作者 赵旭辉 TANG Yuming ZHANG Xiaofeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期586-590,共5页
The correlation between the microhardness and microstructure features of anodic films on 2024 aluminum alloy formed in the mixed sulfuric acid/oxalic acid electrolyte was studied using micro-hardness tester and scanni... The correlation between the microhardness and microstructure features of anodic films on 2024 aluminum alloy formed in the mixed sulfuric acid/oxalic acid electrolyte was studied using micro-hardness tester and scanning electron microscope (SEIVI). The results show that the microhardness of the anodic film is influenced by the mierostructure of the anodic film such as the film porosity, and the order and continuity of the hexagon columnar ceils. The film microhardness increases as the porosity of the anodic film decreases and the order and continuity of the film ceils increase. With the same current density, as the anodic film thickens with anodizing time, the film microhardness increases because the film porosity decreases and the order and continuity of the cells are also improved. Under the condition of the same anodizing time, as the current density increases, the film microhardness decreases due to the higher film porosity and the poorer order and continuity of the film ceils. The film porosity increases because the increased current density can accelerate the oxidation reaction, strengthen the filed-assisted dissolution and the heating effect in the anodic film, resulting in decreased film order and continuity. 展开更多
关键词 aluminum alloy ANODIZING microhardness POROSITY microstructure
下载PDF
Effect of Sn substitution and heat treatment on microstructure and microhardness of Co_(38)Ni_(34)Al_(28-x)Sn_x magnetic shape memory alloys
17
作者 苏佳佳 谢致薇 杨元政 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2158-2163,共6页
Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (137... Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase. 展开更多
关键词 magnetic shape memory alloy Sn substitution Co-Ni-Al alloy microstructure martensitic transformation
下载PDF
Microstructure and microhardness of Ti-48Al alloy prepared by rapid solidification
18
作者 Xiao-yu Chen Hong-ze Fang +3 位作者 Qi Wang Shu-yan Zhang Rui-run Chen Yan-qing Su 《China Foundry》 SCIE CAS 2020年第6期429-434,共6页
To improve the microstructure and microhardness,Ti-48Al(at.%)alloy was rapidly solidified by melt spinning under different cooling rates.The microstructure and microhardness of rapidly solidified Ti-48Al alloy were sy... To improve the microstructure and microhardness,Ti-48Al(at.%)alloy was rapidly solidified by melt spinning under different cooling rates.The microstructure and microhardness of rapidly solidified Ti-48Al alloy were systematically investigated.Results show that the average lamellar colony size of the alloy reduces from 60.6μm to 11μm as the cooling rate increases from 2.3×105 to 5.1×105 K·s-1,caused by the increase of nucleation rate at a higher cooling rate.At the high cooling rate of(4.3-5.1)×105 K·s-1,theαphase is the primary phase,and a few metastableαphases are reserved,which then transform intoα2 phase and subsequently lead to the formation ofα2 equiaxed grain.The lamellar spacing also decreases with the increase of cooling rate.The relationship between lamellar spacing(d)and cooling rate(v)is d=33.6v-1.34.The microhardness increases with the increase of cooling rate because the refined lamellar spacing and grain size can improve the microhardness. 展开更多
关键词 cooling rate solidification path microstructure lamellar spacing microhardness
下载PDF
Abrasion Resistance of Cement Paste with Granulated Blast Furnace Slag and Its Relations to Microhardness and Microstructure
19
作者 CHEN Xiaorun HE Zhen +3 位作者 CAI Xinhua ZHAO Rixu HU Lingling CHEN Hongren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期410-415,共6页
The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Re... The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Results indicated that GBFS decreased the abrasion resistance of paste,and among the pastes with GBFS,the paste with 40 wt%GBFS showed the highest abrasion resistance.The microhardness of GBFS was lower than that of the cement,and the microhardness of the hydration products in paste with GBFS was also lower than that of the hydration products in paste without GBFS,so that the abrasion resistance of paste decreased when GBFS was incorporated.The reason for the decrease of microhardness of pastes with GBFS was that the contents of Ca(OH)_(2)in pastes with GBFS was significantly lower than that in the paste without GBFS,while large amounts of calcium aluminate hydrates and hydrotalcite-like phases(HT)in pastes with GBFS were generated.Furthermore,among the pastes with GBFS,the paste with 40 wt%GBFS showed the lowest porosity which was the main reason for its highest abrasion resistance. 展开更多
关键词 PASTE abrasion resistance granulated blast furnace slag microhardness microstructure
下载PDF
Tailoring microstructure and microhardness of Zn-1wt.%Mg-(0.5wt.%Mn, 0.5wt.%Ca) alloys by solidification cooling rate
20
作者 Talita A.VIDA Cássio A.P.SILVA +3 位作者 Thiago S.LIMA NoéCHEUNG Crystopher BRITO Amauri GARCIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1031-1048,共18页
Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such prope... Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy. 展开更多
关键词 Zn-Mg-(Ca Mn)alloys SOLIDIFICATION cooling rate microstructure microhardness
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部