期刊文献+
共找到3,269篇文章
< 1 2 164 >
每页显示 20 50 100
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
1
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input microstructure hardness
下载PDF
Frost deformation and microstructure evolution of porous rock under uniform and unidirectional freeze-thaw conditions
2
作者 LV Zhitao LIU Jintao +1 位作者 WAN Ling LIU Weiping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2855-2869,共15页
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece... The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale. 展开更多
关键词 Frost deformation microstructure evolution Porous rock Unidirectional freeze-thaw cycles uniform freeze-thaw cycles
下载PDF
Effects of high pressure on the microstructure and hardness of a Cu-Zn alloy 被引量:18
3
作者 ZHAO Juna LIU Lin +4 位作者 YANG Jingru PENG Guirong LIU Jianhua ZHANG Ruijuna XING Guangzhong 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期541-544,共4页
The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffracti... The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), and the hardness of the Cu-Zn alloy was also measured. The results show that the ct phase with a smaller grain size, different shapes, and random distribution appears in the Cu-Zn alloy during the solid-state phase transformation generation in the temperature range of 25-750℃ and the pressure range of 0-6 GPa. The amount of residual α phase in the microstructure decreases and then increases with increasing pressure. Under a high pressure of 3 GPa, the least volume fraction of residual a phase was obtained, and under a high pressure of 6 GPa, the changes of the microstructure of the Cu-Zn alloy were not obvious. In addition, high pressure can increase the hardness of the Cu-Zn alloy, but it cannot generate any new phase. 展开更多
关键词 Cu-Zn alloy microstructure hardness high pressure
下载PDF
Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron 被引量:8
4
作者 ZHOU Shaoping SHEN Yehui +1 位作者 ZHANG Hao CHEN Dequan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期140-147,共8页
High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research ... High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI. 展开更多
关键词 Cr26 white cast iron heat treatment microstructure hardness wear resistance
下载PDF
Microstructure Variation and Hardness Diminution During Low Cycle Fatigue of 55NiCrMoV7 Steel 被引量:7
5
作者 ZHANG zhan ping QI Yu-hong +1 位作者 DELAGNES Denis BERNHART Gerard 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第6期68-73,共6页
The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM... The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel. 展开更多
关键词 low cycle fatigue 55NiCrMoV7 steel microstructure hardness half width
下载PDF
Effect of heat treatment on the microstructure and hardness of C-Cr-W-Mo-V-RE Fe-based hardfacing layer 被引量:7
6
作者 常立民 刘建华 缑慧阳 《China Welding》 EI CAS 2006年第1期43-48,共6页
After different heat treatment processes, the metal compound, the microstructure and the hardness of the C-Cr-W- Mo-V-RE Fe-based hardfacing layers are investigated by means of metallographic microscope, X-ray diffrac... After different heat treatment processes, the metal compound, the microstructure and the hardness of the C-Cr-W- Mo-V-RE Fe-based hardfacing layers are investigated by means of metallographic microscope, X-ray diffraction ( XRD ), energy dispersive spectrum( EDS ), transmission electron microscope(TEM) and hardness tester. The results show that the hardfacing layers have higher tempering stability and secondary hardening property. After quenching at 820 ℃ ,the hardness value( HRC37 ) and the microstructure of the layers are similar to that normalized at 820 - 1 000 ℃. The tempering stability and the hardness increases with increasing quench temperature, which is attributed to the amount of the alloy element in the matrix. These results are very helpful for improving the mechanical properties of the hardfacing layers. 展开更多
关键词 C-Cr-W-Mo-V-RE Fe-based hardfacing layer heat treatment microstructure hardness
下载PDF
Microstructure, Texture, and Hardness Evolutions of Al-Mg-Si-Cu Alloy during Annealing Treatment 被引量:3
7
作者 WANG Xiaofeng MA Cunqian +2 位作者 MA Pengcheng ZHOU Songze WANG Yonggang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1288-1296,共9页
Microstructure, texture and hardness evolutions of Al-Mg-Si-Cu alloy during annealing treatment were studied by microstructure, texture and hardness characterization in the present study. The experimental results show... Microstructure, texture and hardness evolutions of Al-Mg-Si-Cu alloy during annealing treatment were studied by microstructure, texture and hardness characterization in the present study. The experimental results show that microstructure, texture and hardness will change to some extent with the increase of annealing temperature. The microstructure transforms from the elongated bands to elongated grains first, and then the grains grow continuously. The texture transforms from the initial deformation texture b fiber to recrystallization texture mainly consisting of CubeND {001}<310> and P {011}<122> orientations first, and then the recrystallization texture may be enhanced continuously as a result of the grain growth. Hardness decreases slowly at first, and then decreases sharply and increases significantly finally. Besides, the particle distributions also have great changes. As the annealing temperature increases, they increase firstly as a result of precipitation, and then gradually disappear as a result of dissolution. Finally, the effect of annealing temperature on microstructure, texture and hardness evolutions is discussed. 展开更多
关键词 Al-Mg-Si-Cu alloy hardness microstructure TEXTURE RECRYSTALLIZATION
下载PDF
Electrical annealing of severely deformed copper: microstructure and hardness 被引量:2
8
作者 Saeed Nobakht Mohsen Kazeminezhad 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第10期1158-1168,共11页
Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5,... Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5, 1, 2, or 3 s up to maximum temperatures of 150, 200, 250, or 300℃. To compare the annealing process in the current-carrying system with that in the current-free system, four other samples were heated to 300℃ at holding times of 60, 90, 120, or 150 s in a salt bath. The microstructural evolution and hardness values of the samples were then investigated. The results generally indicated that induction of an electrical current could accelerate the recrystallization process by decreasing the thermodynamic barriers for nucleation. In other words, the current effect, in addition to the thermal effect, enhanced the diffusion rate and dislocation climb velocity. During the primary stages of recrystallization, the grown nuclei of electrically annealed samples showed greater numbers and a more homogeneous distribution than those of the samples annealed in the salt bath. In the fully recrystallized condition, the grain size of electrically annealed samples was smaller than that of conventionally annealed samples. The hardness values and metallographic images obtained indicate that, unlike the conventional annealing process, which promotes restoration phenomena with increasing heating time, the electrical annealing process does not necessarily promote these phenomena. This difference is hypothesized to stem from conflicts between thermal and athermal effects during recrystallization. 展开更多
关键词 ANNEALING SEVERE plastic deformation COPPER microstructure hardness
下载PDF
Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy 被引量:2
9
作者 Yusuf Kayglslz 《China Foundry》 SCIE 2018年第5期390-396,共7页
The composition of Al-Cu-Mn ternary eutectic alloy was chosen to be Al-32.5 wt.%Cu-0.6 wt.%Mn to the Al2 Cu and Al12 Cu Mn2 solid phases within an aluminum matrix(α-Al) from its melt. The Al-32.5 wt.%Cu-0.6 wt.%Mn al... The composition of Al-Cu-Mn ternary eutectic alloy was chosen to be Al-32.5 wt.%Cu-0.6 wt.%Mn to the Al2 Cu and Al12 Cu Mn2 solid phases within an aluminum matrix(α-Al) from its melt. The Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was directionally solidified at a constant temperature gradient(G=8.1 K·mm^(-1)) with different growth rates, 8.4 to 166.2 μm·s^(-1),by using a Bridgman-type furnace. The eutectic temperature(the melting point) of 547.85 °C for the Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was obtained from the DTA curve of the temperature difference between the test sample and the inert reference sample versus temperature or time. The lamellar spacings(λ) were measured from transverse sections of the samples. The dependencies of lamellar spacings(λAl-Al2 Cu) and microhardness on growth rates were obtained as, λ_(Al-Al2Cu)=3.02 V^(-0.36), HV=153.2(V)^(0.035), HV=170.6(λ)^(-0.09) and HV=144.3+0.82(λ_(AlAl2 Cu))^(-0.50), HV=149.9+53.48 V^(0.25), respectively, for the Al-Cu-Mn eutectic alloy. The bulk growth rates were determined as λ~2_(Al-Al2 Cu)·V = 25.38 μm^3·s^(-1) by using the measured values of λ_(Al-Al2 Cu) and V. A comparison of present results was also made with the previous similar experimental results. 展开更多
关键词 directional SOLIDIFICATION ALUMINUM ALLOYS microstructure hardness test
下载PDF
Microstructure, hardness evolution and thermal stability of binary Al-7Mg alloy processed by ECAP with intermediate annealing 被引量:8
10
作者 查敏 李彦军 +2 位作者 Ragnvald MATHIESEN Ruben BJRGE Hans J. ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2301-2306,共6页
A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission... A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material. 展开更多
关键词 Al-Mg alloys equal channel angular pressing (ECAP) as-deformed microstructure hardness evolution strengthening thermal stability
下载PDF
Influence of post-weld heat treatment on the microstructure and hardness of laser weld seams on hot-rolled TRIP 800 steel 被引量:3
11
作者 ZUO Dungui1,2) and YAN Qi1,2) 1) Auto Steel Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 2) State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel),Shanghai 201900,China 《Baosteel Technical Research》 CAS 2012年第1期41-43,共3页
The transformation induced plasticity (TRIP) steels effect occurs because of the martensitic transformation of retained austenite during plastic deformation,and it provides the steel with excellent strength and ductil... The transformation induced plasticity (TRIP) steels effect occurs because of the martensitic transformation of retained austenite during plastic deformation,and it provides the steel with excellent strength and ductility.While welding remains a vital part of auto body manufacturing,the weldability of TRIP steels is problematic,and this prevents its adoption for many applications in the automotive industry.This present work studies the effects of welding and post-weld heat treatment on the microstructure of TRIP steels.It is found that the microstructures of the fusion zone and the heat affected zone (HAZ) are changed after high-temperature heat treatment.Hardness tests revealed that fusion zone hardness decreased with increasing of temperatures in the post-weld heat treatment on the laser weld seam.The rolling performance of the welding seam and the seam of post-weld heat treatment were also studied. 展开更多
关键词 TRIP steel laser welding heat treatment microstructure hardness rolling performance
下载PDF
Homogeneity of microstructure and Vickers hardness in cold closed-die forged spur-bevel gear of 20Cr Mn Ti alloy 被引量:2
12
作者 董丽颖 兰箭 庄武豪 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1595-1605,共11页
Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The hom... Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The homogeneity of microstructure of cold closed-die forged gears can highly affect their service performance. The homogeneity of microstructure and Vickers hardness in cold closed-die forged gear of 20 Cr Mn Ti alloy is comprehensively studied by using optical microscopy and Vickers hardness tester. The results show that the distribution homogeneity of the aspect ratio of grain and Vickers hardness is the same. In the circumferential direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous and they gradually decrease from the surface to the center of the tooth. In the radial direction, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous on the surface of the gear tooth; while it is relatively homogeneous in the center of the gear tooth. In the axial direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is relatively homogeneous from the small-end to the large-end of the gear tooth. 展开更多
关键词 cold closed-die forging 20Cr Mn Ti alloy microstructure Vickers hardness
下载PDF
Study on the microstructure and hardness of in-service welded joint of X70 pipeline steel 被引量:2
13
作者 陈玉华 王勇 刘鸽平 《China Welding》 EI CAS 2007年第4期68-71,共4页
Hydrogen induced cracking (HIC) is one of the main problems of in-service welding onto active pipeline. Microstructure and hardness of welded joint have a vital effect on hydrogen induced cracking. The microstructur... Hydrogen induced cracking (HIC) is one of the main problems of in-service welding onto active pipeline. Microstructure and hardness of welded joint have a vital effect on hydrogen induced cracking. The microstructure and hardness of welded joint of XTO pipeline steel were studied using simulation in-service welding device. The results show that the main microstructures of in-service welded seam are grain boundary ferrite , intracrystalline acicular ferrite , as well as small amount of widmanztatten structure. The main microstructures of coarse grain heat-affected zone (CGHAZ) are coarse granular bainite, lath ferrite and martensite. Metastable phases such as martensite and lath ferrite are found in CGHAZ because of the too quick cooling velocity a'nd the hardness of the CGHAZ is high. 展开更多
关键词 in-service welding X70 pipeline steel microstructure hardness
下载PDF
Ageing Effect on Hardness and Microstructure of Al-Zn-Mg Alloys 被引量:5
14
作者 M.Iqbal, M.A.Shaikh, M.Ahmad and K.A.Shoaib (Nuclear Physics Division, Pakistan Institute of Nuclear Science and Technology P.O.Nilore, Islamabad, Pakistan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期319-322,共4页
Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to ... Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed. 展开更多
关键词 ZN Ageing Effect on hardness and microstructure of Al-Zn-Mg Alloys AL
下载PDF
Effect of annealing on the microstructures and Vickers hardness at room temperature of intermetallics in Mo-Si system 被引量:1
15
作者 YANG Haibo LI Wei +1 位作者 SHAN Aidang WU Jiansheng Key Laboratory of Ministry of Education for High Temperature Materials and Tests & Department of Material Science and Engieering, Shanghai Jiao Tong University, Shanghai 200030, China 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期176-181,共6页
The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated.... The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated. Lamellar structure consisted of Mo_5Si_3 (D8m) phaseand MoSi_2 (C11_b) phase was observed in all the alloys. For Mo_5Si_3-MoSi_2 hypoeutectic alloy, thelamellar structure was found only after annealing and developed well with fine spacing on the orderof hundred nanometers after annealing at 1200℃ for 48 h. But when the annealing time was up to 96h, the well-developed lamellar structure was destroyed. For Mo_5Si_3-MoSi_2 hypereutectic alloy, thelamellar structure was found both before and after annealing. However the volume fraction andspacing of the lamellar structure did not change significantly before and after annealing. Theeffects of the formation, development and destruction of lamellar structure on Vickers hardness ofalloys were also investigated. When Mo_5Si_3-MoSi_2 hypoeutectic alloy annealed at 1200℃ for 48 h,the Vickers hardness was improved about 19% compared with that without annealing and formation oflamellar structure. The highest Vickers hardness of Mo5Si3-MoSi_2 hypereutectic was increasing about18% when annealing at 1200℃ for 48 h. 展开更多
关键词 material experiment lamellar structure microstructure vickers hardness ANNEAL INTERMETALLICS Mo-Si system
下载PDF
Microstructures and Hardness of 8CrWMoV Steel with Multiple Types of Ultra Fine Carbides 被引量:4
16
作者 DAIYu-mei ZHANGZhan-ping MAYong-qing QIYu-hong LIUYan-xia YUTao 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期279-283,共5页
The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M2... The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M23C6, M6C and MC were observed in the annealed steel. Nucleation and coalescence of new carbides, partial dissolution of original carbides in γ phase region during annealing at 800~840℃, result in ultra-fine carbides. Average size of the carbides is0.33~0.34μm in the steel annealed at 800~840℃. Because M3C and M23C6 dissolve easily in austenite, the high hardness HRC63~65 can be obtained by quenching at 840~860℃. Un-dissolved carbides M6C and MC (VC) can effectively prevent the coarsening of austenitic grain, and conduce to obtain very fine martensite. The retained austenite can be easy to decompose during tempering at low and middle temperature due to the precipitation of multiple types of carbides and the good tempering-resistance of the steel is obtained. The microstructure and property of the steel after heat treatment can be accurately explained by calculating based on phase equilibrium thermodynamic.Key Words: 8CrWMoV steel, ultra-fine carbide, heat treatment, microstructure, 展开更多
关键词 显微结构 8CrWMoV钢 超细硬质合金 硬度 热处理
下载PDF
Effect of laser heating on the microstructure and hardness of TRIP590advanced high strength steel used for roll forming 被引量:1
17
作者 王海波 Jin Pengcheng +1 位作者 Yan Yu Li Qiang 《High Technology Letters》 EI CAS 2015年第4期429-432,共4页
TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by met... TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness. 展开更多
关键词 TRIP590 advanced high strength steel laser heating microstructure hardness
下载PDF
Effect of Hot Deformation on Microstructure and Hardness of In-situ TiB_2/7075 Composite 被引量:1
18
作者 Lin GENG and Jie ZHANG P.O.Box 433, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China C.Bartels and G. Got tstein Institut fur Metallkunde und Metallphysik, Kopernikusstr.14, RWTH Aa 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期675-676,共1页
Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (abo... Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect. 展开更多
关键词 TIB Effect of Hot Deformation on microstructure and hardness of In-situ TiB2/7075 Composite
下载PDF
Effect of Laser Cladding Processing Parameters on Nitinol’s Clad Dimensions, Microstructure, and Hardness 被引量:2
19
作者 Engy M. Zain Ahmed Farid Youssef +2 位作者 Ahmad El Sabbagh Sisa Pityana Mohamed A. Taha 《Materials Sciences and Applications》 2021年第12期603-613,共11页
Nickel Titanium alloy (Nitinol) is characterized by its good mechanical properties, good damping properties in addition to its distinctive shape-memory effect and superelasticity effect besides its great bio-mechanica... Nickel Titanium alloy (Nitinol) is characterized by its good mechanical properties, good damping properties in addition to its distinctive shape-memory effect and superelasticity effect besides its great bio-mechanical compatibility and corrosion resistance. These properties have empowered its applications, particularly within the bio-medical and aerospace industry. Despite these exceptional properties, the manufacturing of Nitinol by conventional methods is exceptionally troublesome and costly and consequently must be inspected. Therefore, additive manufacturing specifically laser-based ones were used recently. In this research, the effect of processing parameters of laser cladding/laser direct deposition on Nitinol’s Microstructure, Hardness and Clad Dimensions was evaluated. Systematic characterization of Nitinol samples was done utilizing Optical Microscopy and Vickers hardness tester. Samples of Nitinol were synthesized with different processing parameters using laser cladding and its properties were investigated and compared to one another to get the optimum processing parameters to synthesize a near net shape, fully dense Nitinol component with reliable properties. The results showed that there’s a processing parameter window at which the alloy possesses its best mechanical and functional properties which were of Laser power of value 1.25 Kw, Scan speed of 1.5 m/min and powder deposition rate of 1.5/1.5 RPM, these conditions resulted in the formation of martensite phase which is responsible for its functional properties with 40% volume fraction and a hardness value of 598 HV. 展开更多
关键词 Nitinol Shape Memory Alloy Additive Manufacturing hardness microstructure
下载PDF
Microstructures and hardness of Ti-6Al-4V alloy staging castings under centrifugal field 被引量:1
20
作者 隋艳伟 李邦盛 +3 位作者 刘爱辉 南海 郭景杰 傅恒志 《中国有色金属学会会刊:英文版》 CSCD 2008年第2期291-296,共6页
By means of induction melting technology,Ti-6Al-4V alloy staging casting was made with the same rotation velocity and centrifugal radius.The effects of casting modulus on the grain size,the thickness of lamellarα+βp... By means of induction melting technology,Ti-6Al-4V alloy staging casting was made with the same rotation velocity and centrifugal radius.The effects of casting modulus on the grain size,the thickness of lamellarα+βphase,and the Vickers hardness,as well as the relationships between Vickers hardness,grain size and thickness of lamellarα+βphase were investigated.The results show that the greater the modulus,the larger the grain size and the thickness of lamellarα+βphase,and the less the Vickers hardness. The relationship between Vickers hardness and grain size meets the Hall-Petch equation:Hv=353.45+74.17 d G-1/2 .The relationship between the Vickers hardness and the thickness of lamellarα+βphase is expressed as Hv=2.45d2α+β-35.96d α+β+476.84. 展开更多
关键词 微观结构 硬度 合金 铸件 离心场
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部