期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fluid Inclusion Petrography and Microthermometry of Zn and Pb Deposits of Rajpura-Dariba Bethumni Belt, Udaipur District (Rajasthan), India
1
作者 Juned Alam Farhat Nasim Siddiquie 《International Journal of Geosciences》 2015年第3期256-273,共18页
The Proterozoic Aravalli-Delhi orogenic complex hosts a large number of economically important stratabound base metal sulphide deposits. In the present work, rock samples taken from Outcrop and Underground Mine of Sin... The Proterozoic Aravalli-Delhi orogenic complex hosts a large number of economically important stratabound base metal sulphide deposits. In the present work, rock samples taken from Outcrop and Underground Mine of Sindeskar Kalan, Vedanta Group, Rajpura Dariba-Bethumni Belt which is located at a distance of 76 kms from Udaipur city, Rajasthan have been studied. The chief litho units of the group which contain sulfide-bearing calc-silicate and graphite mica schist, dolomite marble, calc-biotite schist and quartzite are identified. An attempt has also been made to study/or hydrothermal in origin in the different types of fluid inclusions, hosted predominately in Geothermometry viz. heating and freezing study of entrapped palaeo-fluids (such as sedimentary and quartz host grain and a few in sphalerites). The quartz hosts are identified with four types of fluid inclusions, such as 1) monophase (gas/vapour), 2) gas-rich biphase, 3) liquid-rich biphase and 4) polyphase types. The primary types of fluid inclusions show that melting temperature of ice or depression freezing point (DFP) (ranging from -2.5°C to -7.2°C)/(salinity ranging from 4.5 - 13.25 wt% NaCl eq.) and temperature of homogenization into liquid phase (ranging from +188°C to +218°C) have been measured. Data from the fluid inclusions and salinity calculation (low salinity) reveal that rate of cooling is the important mechanism of ore deposition in the study area. 展开更多
关键词 SPHALERITE Quartz Fluid INCLUSIONS PETROGRAPHY and microthermometry Rajpura
下载PDF
Cu-Bearing Mokama Granite Prospect of the Kibara Belt in the Maniema Province, DRC: A Preliminary Petrography, Geochemistry, and Fluid Inclusion Study
2
作者 Douxdoux Kumakele Makutu Ivan Bongwe +3 位作者 Chris Musomo Mfumu Frederick Makoka Mwanza Jean-Pierre Bulambo Pierre Kambuli Kaseti 《Open Journal of Geology》 2023年第10期1007-1023,共17页
The Mokama granites are located in the Kibara belt (KIB) and hosts tin oxide group minerals (TOGM: Sn-W), and sulfide group minerals (SGM: Cu-Zn-Fe-As). The essential of Cu mineralization (non-economic deposit) is dis... The Mokama granites are located in the Kibara belt (KIB) and hosts tin oxide group minerals (TOGM: Sn-W), and sulfide group minerals (SGM: Cu-Zn-Fe-As). The essential of Cu mineralization (non-economic deposit) is disseminated inside the rock and consists of minerals (Raman, EPMA and metallographic microscopy) including chalcopyrite and bornite that are replaced by chalcocite and covellite, and the last also replaced later by malachite. The chemistry (XRF, LA-ICP-MS) of these peraluminous S-type leucogranites show SiO<sub>2</sub> (71 wt% - 79 wt%), ASI (1.4 - 3.1 molar), and are enriched in Rb (681 - 1000 ppm), Ta (12–151 ppm), Sn (43 - 142 ppm), Cu (10 - 4300 ppm), Zn (60 - 740 ppm), U (2.2 - 20.7 ppm) while depleted in Zr (20 - 31 ppm), Sr (20 - 69 ppm), Hf (1.3 - 2.0 ppm), Th (2.2 - 18.9 ppm), W (9 - 113 ppm), Pb (5 - 50 ppm), Ge (5 - 10 ppm), Cs (21 - 53 ppm) and Bi (0.6 - 17.4 ppm) and low ratios of (La/Yb) N, (Gd/Yb) N, (La/Sm) N). Fluid inclusion assemblages (FIAs) hosted in quartz in the Mokama granites show ranges of salinities of 4 - 23 wt% (NaCl equivalent) and homogenization temperatures (Th) of 190°C - 550°C. A boiling assemblage in the granite suggests a fluid phase separation occurred at about 380 - 610 bars, and this corresponds to apparent paleodepths of approximately 1 - 2 km (lithostatic model) or 3 - 5 km (hydrostatic model). FIAs hosted in TOGM such as cassiterite (salinities of 2 wt% - 10 wt% and Th of 220°C - 340°C) helped set up the possible temperature limit of SGM (Cu sulfide) precipitations that are estimated below 200°C. 展开更多
关键词 Mokama Granites PETROGRAPHY GEOCHEMISTRY Cu-Mineralization XRF EPMA LA-ICP-MS Fluid Inclusion microthermometry
下载PDF
Ore-forming Fluid and Metallogenic Mechanism of Wolframite-Quartz Vein-type Tungsten Deposits in South China 被引量:5
3
作者 NI Pei LI Wensheng PAN Junyi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1774-1796,共23页
South China is endowed with copious wolframite-quartz vein-type W deposits that provide a significant contribution to the world‘s tungsten production.Mineralization is spatially associated with highly evolved granite... South China is endowed with copious wolframite-quartz vein-type W deposits that provide a significant contribution to the world‘s tungsten production.Mineralization is spatially associated with highly evolved granites,which have been interpreted as products of ancient crustal anatexis.Ore veins are mainly hosted in low-grade metamorphosed quartz sandstone,slate and granitic rocks.The ore minerals mainly comprise wolframite,cassiterite,scheelite and pyrite,with minor molybdenite,arsenopyrite and chalcopyrite.Typical steeply dipping veins can be divided into five zones from top to the bottom,namely:(Ⅰ)thread,(Ⅱ)veinlet,(Ⅲ)moderate vein,(Ⅳ)thick vein,and(Ⅴ)thin out zones.In general,three types of fluid inclusions at room temperature are commonly recognized in wolframite and/or quartz from these veins:two-phase liquid-rich(type L),two-phase CO2-bearing(type CB),and CO2-rich(type C).Comparative microthermometry performed on fluid inclusions hosted in wolframite and associated quartz indicates that most wolframite was not coprecipitated with the coexisting quartz.Detailed petrographic observation and cathodoluminescence(CL)imaging on coexisting wolframite and quartz of the Yaogangxian deposit,show repeated precipitation of quartz,wolframite,and muscovite,suggesting a more complex fluid process forming these veins.Previous studies of H-O isotopes and fluid inclusions suggested that the main ore-forming fluids forming the wolframite-quartz vein-type deposits had a magmatic source,whereas an unresolved debate is centered on whether mantle material supplemented the ore-forming fluids.The variable CO2 contents in the ore-forming fluids also implies that CO2 might have had a positive effect on ore formation.Fluid inclusion studies indicate that wolframite was most likely deposited during cooling from an initial H2 O+Na Cl±CO2 magmatic fluid.In addition,fluid-phase separation and/or mixing with sedimentary fluid might also have played an important role in promoting wolframite deposition.We speculate that these processes determine the precipitation of W to varying degrees whereas the leading mechanistic cause remains an open question.Comprehensive studies on spatial variation of fluid inclusions show that both the steeply and gently dipping veins are consistent with the"five floors"model that may have broader applications to exploration of wolframite-quartz vein-type deposits.Recent quantitative analysis of wolframite-and quartz-hosted fluid inclusions by laser ablation inductively-coupled plasma mass spectrometry shows enhanced advantages in revealing fluid evolution,tracing the fluid source and dissecting the ore precipitation process.Further studies on wolframite-quartz vein-type W deposits to bring a deeper understanding on ore-forming fluids and the metallogenic mechanism involved. 展开更多
关键词 METALLOGENY wolframite-quartz vein fluid inclusions microthermometry Nanling region
下载PDF
Determination of Salinity in Fluid Inclusions with Laser Raman Spectroscopy Technique 被引量:1
4
作者 Seyed Javad Moghaddasi 《Journal of Earth Science》 SCIE CAS CSCD 2000年第4期34-37,共4页
A preliminary study was conducted to outline the laser Raman spectroscopy technique for determination of salinity in the aqueous phase in fluid inclusions. The skewing parameters of the Raman profiles of the calibrat... A preliminary study was conducted to outline the laser Raman spectroscopy technique for determination of salinity in the aqueous phase in fluid inclusions. The skewing parameters of the Raman profiles of the calibration solutions determined were used to derive a calibration curve for the estimation of the equivalent mass fraction NaCl in aqueous solutions. This technique was also verified in the analysis of the natural fluid inclusions from Tongshankou porphyry Cu (Mo) deposit, Hubei Province, China. Although the analyses on the natural fluid inclusions are limited, an acceptable agreement has been reached on the salinities, for most fluid inclusions, determined by the Raman spectroscopy and microthermometry techniques, indicating the reliability of the Raman technique for determination of salinity in fluid inclusion studies. 展开更多
关键词 Raman spectroscopy fluid inclusion SALINITY skewing parameter microthermometry.
下载PDF
Fluid inclusion studies of the Kenticha rare-element granite-pegmatite,Southern Ethiopia
5
作者 Barsisa Bekele Amit Kumar Sen 《Acta Geochimica》 EI CAS CSCD 2022年第6期926-946,共21页
In the Kenticha area,a series of barren to rare metal-bearing pegmatites intruded into the Neoproterozoic Adola Belt.The pegmatites host world-class Nb and Ta deposits and significant Li and Be reserves.In this contri... In the Kenticha area,a series of barren to rare metal-bearing pegmatites intruded into the Neoproterozoic Adola Belt.The pegmatites host world-class Nb and Ta deposits and significant Li and Be reserves.In this contribution,fluid inclusion data and feldspar geothermometry have been combined to define the crystallization condition of the Kenticha rare-metal pegmatite.Primary and complex assemblages of secondary fluid inclusions representing episodic fluid circulations have been identified in quartz and spodumene.A primary aqueous-carbonic fluid of low salinity aqueous solution with liquid and vapour CO_(2) phases,secondary carbonic fluid rich and carboniconly fluids,and multiple generations of secondary aqueous inclusions that represent sub-solidus hydrothermal circulation have been identified.All aqueous inclusions were homogenized into the liquid phase between 100 and 290℃.Aqueous-carbonic inclusions were homogenized,usually via a critical transition[T_(h)(LV→SCF)]between 241 and 397℃,or less commonly,via a dew-point transition[T_(h)(LV→V)]between 213 and 264℃.Crystallization of the rare-element pegmatite is certainly associated with the late-stage magmatic or early hydrothermal low-salinity aqueous-carbonic fluid that homogenizes to critical conditions.A combination of microthermometric data and existing experimentally determined solidus from flux and volatile bearing haplogranite suggests exsolution of fluids from hydrous silicate melt,perhaps during crystallization of the aplitic layer.The fluids were then trapped and isobarically cooled along a reasonable geothermal gradient within the pegmatite unit down to a temperature of around 397℃. 展开更多
关键词 Fluid inclusions microthermometry PEGMATITE Cooling-path BOILING Kenticha
下载PDF
Genesis of the Xinfang Gold Deposit,Liaodong Peninsula:In-sights from Fluid Inclusions and S-Sr Isotopic Constraints 被引量:2
6
作者 Shuaijie Liu Bin Chen +2 位作者 Jiahao Zheng Chuang Bao Guochun Zhao 《Journal of Earth Science》 SCIE CAS CSCD 2021年第1期68-80,共13页
The North China Craton(NCC)has been continuously reactivated since the Mesozoic and this decratonization is responsible for its economically important gold mineralization in the Meso-zoic.The Early Cretaceous(110-130 ... The North China Craton(NCC)has been continuously reactivated since the Mesozoic and this decratonization is responsible for its economically important gold mineralization in the Meso-zoic.The Early Cretaceous(110-130 Ma)gold mineralization in the NCC has been well-studied due to its significance,but little attention has been given to other episodes of gold mineralization related to polyphased reactivation of the NCC.The Xinfang mesozonal gold deposit(143 Ma)in the Liaodong Peninsula is related to the one of the episodes of the Yanshanian orogeny.The orebodies of the Xin-fang gold deposit were controlled by the low angle transpressive fault systems and hosted by the Neoarchean monzogranitic gneiss.Fluid inclusion microthermometry reveals that the mineralizing temperatures range from 220 to 280℃,with salinities from 6 wt.%NaCl eqv.to 15 wt.%NaCl eqv.,pressures from 199 to 321 Ma.The S isotopic characteristics of sulfides not only record a heterogene-ous source including magmatic or gneissic sulfur but also record inter-mineral isotope fractionation.The initial^(87)Sr/^(86)Sr values of pyrite(0.713480-0.729031)indicate a radiogenic crustal origin for the sources.The metamorphic dehydration of the underlying basement resulted in the genesis of the Xin-fang gold deposit.We summarize three episodes of gold mineralization in the Liaodong Peninsula re-lated to continuous reactivation of the NCC,which indicates a great exploration potential of this area. 展开更多
关键词 Xinfang gold deposit fluid inclusion microthermometry in-situ S isotope Sr isotope MULTISTAGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部