期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Spatial structural characteristics of the Deda ancient landslide in the eastern Tibetan Plateau:Insights from Audio-frequency Magnetotellurics and the Microtremor Survey Method
1
作者 Zhen-dong Qiu Chang-bao Guo +5 位作者 Yi-ying Zhang Zhi-hua Yang Rui-an Wu Yi-qiu Yan Wen-kai Chen Feng Jin 《China Geology》 CAS CSCD 2024年第2期188-202,共15页
It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the lan... It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau. 展开更多
关键词 Ancient landslide Remote sensing Audio-frequency Magnetotellurics(AMT) microtremor survey Method(MSM) Geological drilling engineering Spatial structure Tibetan Plateau Geological hazard survey engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部