期刊文献+
共找到1,557篇文章
< 1 2 78 >
每页显示 20 50 100
CNKSR2 interactome analysis indicates its association with the centrosome/microtubule system
1
作者 Lin Yin Yalan Xu +9 位作者 Jie Mu Yu Leng Lei Ma Yu Zheng Ruizhi Li Yin Wang Peifeng Li Hai Zhu Dong Wang Jing Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2420-2432,共13页
The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKS... The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders. 展开更多
关键词 autism spectrum disorder CENTROSOME CNKSR2 intellectual disability INTERACTOME mass spectrometry microtubule neurodevelopmental disease protein complexes protein-protein interactions
下载PDF
Effects of P301L-TAU on post-translational modifications of microtubules in human iPSC-derived cortical neurons and TAU transgenic mice
2
作者 Mohamed Aghyad Al Kabbani Christoph Köhler Hans Zempel 《Neural Regeneration Research》 SCIE CAS 2025年第8期2348-2360,共13页
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal... TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies. 展开更多
关键词 human induced pluripotent stem cell microtubuleS P301L pR5 mice TAU TAUOPATHY tubulin code
下载PDF
Recent clinical trials and optical control as a potential strategy to develop microtubule-targeting drugs in colorectal cancer management 被引量:1
3
作者 Katsuhiro Kita Allen Burdowski 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1780-1790,共11页
Colorectal cancer(CRC)has remained the second and the third leading cause of cancer-related death worldwide and in the United States,respectively.Although significant improvement in overall survival has been achieved,... Colorectal cancer(CRC)has remained the second and the third leading cause of cancer-related death worldwide and in the United States,respectively.Although significant improvement in overall survival has been achieved,death in adult populations under the age of 55 appears to have increased in the past decades.Although new classes of therapeutic strategies such as immunotherapy have emerged,their application is very limited in CRC so far.Microtubule(MT)inhibitors such as taxanes,are not generally successful in CRC.There may be some way to make MT inhibitors work effectively in CRC.One potential advantage that we can take to treat CRC may be the combination of optical techniques coupled to an endoscope or other fiber optics-based devices.A combination of optical devices and photo-activatable drugs may allow us to locally target advanced CRC cells with highly potent MT-targeting drugs.In this Editorial review,we would like to discuss the potential of optogenetic approaches in CRC management. 展开更多
关键词 Colorectal cancer CHEMOTHERAPY microtubule COMBRETASTATIN Photopharmacology
下载PDF
Photo-activated microtubule targeting drugs: Advancing therapies for colorectal cancer
4
作者 Naresh Singh Samantha Sharma 《World Journal of Gastroenterology》 SCIE CAS 2024年第26期3257-3260,共4页
Over the years immunotherapy has demonstrably improved the field of cancer treatment.However,achieving long-term survival for colorectal cancer(CRC)patients remains a significant unmet need.Combination immunotherapies... Over the years immunotherapy has demonstrably improved the field of cancer treatment.However,achieving long-term survival for colorectal cancer(CRC)patients remains a significant unmet need.Combination immunotherapies incor-porating targeted drugs like MEK or multi-kinase inhibitors have offered some palliative benefit.Nevertheless,substantial gaps remain in the current therapeutic armamentarium for CRC.In recent years,there has been a surge of interest in exploring novel treatment strategies,including the application of light-activated drugs in conjunction with optical devices.This approach holds promise for achie-ving localized and targeted delivery of cytotoxic agents,such as microtubule-targeting drugs,directly to cancerous cells within the colon. 展开更多
关键词 Colorectal cancer Therapy microtubule Photo pharmacology Immuno-therapies©The Author(s)2024.Published by Baishideng Publishing Group Inc.All rights reserved.
下载PDF
The Change of Microtubule Cytoskeleton in the Stem-Tip Cells of Sugarcane during Mitosis 被引量:1
5
作者 李志刚 赵洪波 +2 位作者 李素丽 杨丽涛 李杨瑞 《Agricultural Science & Technology》 CAS 2008年第1期94-98,149,共6页
In order to understand the microtubule change of monocotyls stem-tip during mitosis, the arrangement, transformation of microtubule array and its relation with chromosome movement during mitosis were studied with free... In order to understand the microtubule change of monocotyls stem-tip during mitosis, the arrangement, transformation of microtubule array and its relation with chromosome movement during mitosis were studied with freezing microtome, indirect immunofluoreseenee, DAPI staining and fluorescence microscopy. The results showed that nucleolus was intact when the cortical microtubules formed; cortical microtubules were changed into phramoplast microtubules bands at mitosis prophase. When phramoplast microtubules came into being, nuclear membrane was ruptured and chromosome was arranged at the position of cell plate ; subsequently, phramoplast microtubules were changed into phragmoplast microtubules, phramoplast microtubules were shortening and microtubules on the sides of cell plate were increasing gradually, during this course sister ehromatid was separated by microtubules at cell plate and tract to the two poles, forming phragmoplast microtubules. Then the nucleolus of two daughter cells formed and separated in the end with the increase of cells numbers. Therefore, cell division orientation could be judged from the arrangement of cell microtubules in different periods in order to understand its growth status. 展开更多
关键词 SUGARCANE microtubules cytoskeleton microtubule cycles MITOSIS
下载PDF
Microtubule Structure and Male Sterility in a Gene-Cytoplasmic Male Sterile Line of Rice, Zhen Shan 97A 被引量:4
6
作者 叶秀麟 杨子德 +1 位作者 徐是雄 梁承邺 《Acta Botanica Sinica》 CSCD 2003年第2期183-192,共10页
Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 o... Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 of a Mine hybrid rice production system. In the restorer line, Ce64, the developing microsporocytes have dense cytoplasm and a distinct set of circumferential microtubules around the nucleus. Successive cytokinesis results in the formation of tetrads. The microtubules within the cells of tetrads and microspores radiate from the surface of the nucleus towards the outer edge of the cytoplasm. Subsequent pollen development is normal. During the course of microspore formation tubulin speckles can be found in the cytoplasm. The general pattern of development and microtubule organization in the maintainer lined Zhen Shan 97B, is similar to Ce64, except that a few more tubulin speckles appear during microspore formation. In the case of the mate sterile line, Zhen Shan 97A, a number of abnormalities can be discerned during early microsporogenesis. These include vacuoles forming within the developing microsporocyte and faintly stained microtubules with no defined distribution pattern. Prominent tubulin speckles are common within the cytoplasm. For those microsporocytes that undergo meiosis, no defined organizational patterns of microtubules can be found within the tetrad. All microspores abort soon after. Abnormalities and defects in microtubule organization observed in Zhen Shan 97A showed that complex interactions between the cytoplasm and the nucleus began at very early stage of microsporocyte development. 展开更多
关键词 Oryza saliva cytoplasmic male sterility microtubuleS microsporocyte VACUOLE tubulin speckles
下载PDF
Expression changes of microtubule associated protein 1B in the brain of Fmr1 knockout mice 被引量:2
7
作者 韦朝霞 易咏红 +4 位作者 孙卫文 王蓉 苏涛 白永杰 廖卫平 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第4期203-208,共6页
Objective To explore the regulatory effect of fragile X mental retardation protein (FMRP) on the translation of microtubule associated protein 1B (MAP1B). Methods The expressions of MAP1B protein and MAP1B mRNA in... Objective To explore the regulatory effect of fragile X mental retardation protein (FMRP) on the translation of microtubule associated protein 1B (MAP1B). Methods The expressions of MAP1B protein and MAP1B mRNA in the brains of 1-week and 6-week old fragile X mental retardation-1 (FmrI) knockout (KO) mice were investigated by immunohistochemistry, Western blot, and in situ hybridization, with the age-matched wild type mice (WT) as controls. Results The mean optical density (MOD) of MAP1B was significantly decreased in each brain region in KO6W compared with WT6W, whereas in KO1W, this decrease was only found in the hippocampus and cerebellum. MAP1B in 6-week mice was much less than that in 1-week mice of the same genotype. The results of Western blot and in situ hybridization showed that MAP1B protein and MAP1B mRNA were significantly decreased in the hippocampus of both KO1W and KO6W. Conclusion The decreased MAP1B protein and MAP1B mRNA in the Fmrl knockout mice indicate that FMRP may positively regulate the expression of MAP1B. 展开更多
关键词 fragile X syndrome fragile X mental retardation protein microtubule associated protein 1 B MICE
下载PDF
Comparative Studies on the Changes of Microtubule Distribution and Reorganization During the Meiotic Stages of Development in Normal (IR36) and a Temperature/photoperiod Sensitive Male Sterile Line (Peiai 64S) of Rice ( Oryza sativa ) 被引量:3
8
作者 徐是雄 刘向东 +1 位作者 冯九焕 卢永根 《Acta Botanica Sinica》 CSCD 2001年第3期221-226,共6页
Changes in the pattern of organization of microtubules in the meiotic stages of development of pollen (i.e. from pre-meiotic interphase to more or less metaphase I) of a normal (IR36) and a temperature/photoperiod sen... Changes in the pattern of organization of microtubules in the meiotic stages of development of pollen (i.e. from pre-meiotic interphase to more or less metaphase I) of a normal (IR36) and a temperature/photoperiod sensitive male sterile line (Peiai 64S) of rice were studied using immunofluorescence confocal microscopy. In IR36, from pre-meiotic interphase to metaphase I, the pattern of microtubule distribution in the meiocytes underwent a series of changes. Some new organizational patterns of microtubules (that have not been described before) were observed during microsporogenesis, including the existence of a broad band of perinuclear microtubules at the diakinesis stage of development. The pattern of microtubule distribution in the meiocytes of the male sterile line, Peiai 64S, was quite different front that seen in IR36. In Peiai 64S, the microtubules showed abnormal patterns of distribution from pre-meiotic interphase to metaphase I. For example the broad band of perinuclear microtubules seen at diakinesis in IR36 was much disorganized and loosened in Peiai 64S. The spindles formed were also very abnormal and different from the normal spindle. The appearance of abnormal microtubule distribution in the early stages of microsporogenesis may contribute to the malformation and ultimate abortion of pollen in Peiai 64S. 展开更多
关键词 Oryza sativa temperature/photoperiod sensitive male sterile rice line microtubules Peiai 64S IR36 microsporocyte meiosis microsporogenesis
下载PDF
Further Studies on Microtubule Organizational Changes During Megagametogenesis in Rice Embryo Sac
9
作者 徐是雄 刘向东 +1 位作者 朱洪亮 卢永根 《Acta Botanica Sinica》 CSCD 2001年第9期910-917,共8页
Changes in the pattern of microtubule distribution and organization during megagametogenesis in the embryo sac of rice (Oryza sativa L. cv. IR36) were re-examined using a modified polyethylene glycol sectioning techni... Changes in the pattern of microtubule distribution and organization during megagametogenesis in the embryo sac of rice (Oryza sativa L. cv. IR36) were re-examined using a modified polyethylene glycol sectioning technique before immuno-fluorescence staining of microtubules. In the sectioned materials the pattern of distribution and structural organization of the microtubule cytoskeleton were quite well preserved. Fine details of the patterns of structural changes and re-organization of the microtubule cytoskeleton in the major stages of development during embryo sac megagametogenesis (viz. functional megaspore, uni-nucleate, 2-nucleate, 4-nucleate, 8-nucleate and mature stage) could be clearly observed and easily followed. Some new organizational patterns of microtubules associated with the probable movement and positioning of the polar nuclei were observed. 展开更多
关键词 Oryza sativa embryo sac MEGAGAMETOGENESIS microtubule
下载PDF
Effect of 2,4-D on Microtubule Reorientation in Rice Root Tips
10
作者 刘向东 卢永根 《Acta Botanica Sinica》 CSCD 2000年第4期367-372,共6页
The reorientation of microtubules (MTS) in roots of Oryza sativa L. treated with 2,4_D was studied using confocal laser scanning microscopy. In the control (the roots were not treated with 2,4_D), different distributi... The reorientation of microtubules (MTS) in roots of Oryza sativa L. treated with 2,4_D was studied using confocal laser scanning microscopy. In the control (the roots were not treated with 2,4_D), different distribution patterns of MTS were observed in the different growth zones of root tips. MTS of the cortical cells were randomly aligned in the zone of cell division. They were transversely arranged in the cortical cells of the zone of cell elongation; and obliquely oriented in the root hair zone. After treatment with 2,4_D, MTS displayed distinct changes with reorientation in the cortex of the root tip coupling with the inhibition of root growth. MTS changed their orientation in the cortical cells of the zone of cell division from being randomly oriented to transversely oriented when incubated in 1 mg/L 2,4_D for 1 h. However, they were recovered and became randomly oriented when the roots were treated with 1 mg/L 2,4_D for 24 h. An array of MTS, which was different from that in the control, was observed in the cortical cells of the zone of cell elongation in the roots treated with 1 mg/L 2,4_D for 1 h. After treatment with 10 mg/L 2,4_D for 1 h, the MTS in the cortical cells of the zone of cell division became transversely reorientated, but the pattern of MTS distribution was different from that in the 1_hour treatment of 1 mg/L 2,4_D. MTS were hardly detected in the same type of cells when roots were submerged in 10 mg/L 2,4_D for 24 h. When roots were incubated in 10 mg/L 2,4_D for 1 h, the MTS of the cortical cells in the zone of cell elongation became randomly oriented, and much more randomly when the roots were treated for 24 h. 展开更多
关键词 RICE root tip microtubule 2 4_D
下载PDF
Changes of the Microtubule Arrays During Mitosis in Prothallus Cells of Dryopteris crassirhizoma 被引量:1
11
作者 何群 尤瑞麟 姆旺戈 《Acta Botanica Sinica》 CSCD 2003年第2期193-199,共7页
Microtubule arrays in prothalli large-vacuolated and meristematic dividing cells of the fern Dryopteris crassirhizoma Nakai were studied using Steedman's wax, indirect immunofluorescence labelling and confocal las... Microtubule arrays in prothalli large-vacuolated and meristematic dividing cells of the fern Dryopteris crassirhizoma Nakai were studied using Steedman's wax, indirect immunofluorescence labelling and confocal laser scanning microscopy. Results showed that the use of high paraformaldehyde concentration (8%) allowed good fixation of prothallus cells, which are characterized by numerous (meristematic cells) and big (large-vacuolated cells) vacuoles. Results also plead for the efficiency of Steedman's wax embedding method in: (1) avoiding excessive use of enzyme for digesting cell wall in the process of the microtubule cytoskeleton labelling, (2) minimizing the autofluorescence effect in cells through utilization of alcohol in sample dehydration, and (3) permitting a clear visualization of microtubule patterns during the cell mitosis. Steedman's wax, coupled with immunofluorescence labelling and confocal laser scanning microscopy techniques, allows a good investigation of cell division process in plants by using simple multicellular organisms such as fern prothalli. 展开更多
关键词 microtubule meristematic cell large vacuolated cells MITOSIS Steedman's wax sectioning confocal laser scanning microscopy Dryopteris crassirhizoma
下载PDF
Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration 被引量:5
12
作者 Guang-bin Zha Mi Shen +1 位作者 Xiao-song Gu Sheng Yi 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1506-1511,共6页
Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerativ... Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration. 展开更多
关键词 nerve regeneration sciatic nerve crush microtubule-associated protein TAU phosphorylated tau (Ser 404) tau hyper-phosphorylation tau tubulin kinase 1 microtubule structure microtubule assembly and disassembly peripheral nervous system neural regeneration
下载PDF
Preparation and magnetic properties of Fe_2O_3 microtubules prepared by sol-gel template method 被引量:2
13
作者 CHANG Chuanbo ZHANG Cunrui +1 位作者 WANG Wenyan LI Qiaoling 《Rare Metals》 SCIE EI CAS CSCD 2010年第5期501-504,共4页
Fe(OH)3 precursor sol was prepared by a sol-gel method. The precursor sol was dipped onto the absorbent cotton, and gel was formed on the absorbent cotton template after the volatilization of moisture. Fe2O3 microtu... Fe(OH)3 precursor sol was prepared by a sol-gel method. The precursor sol was dipped onto the absorbent cotton, and gel was formed on the absorbent cotton template after the volatilization of moisture. Fe2O3 microtubules were synthesized after the process of self-propagation or calcination. The phase, morphology, and particle diameter of the samples were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the magnetic properties of the samples were measured using a vibrating sample magnetometer (VSM). The external diameters of Fe2O3 microtubules ranged between 8 and 13 μm, and the wall thicknesses ranged between 0.5 and 2 μm. The type of the calcination method plays a significant role in developing the Fe2O3 phase and the variation in the magnetic properties in the sol-gel template complexing method. γ-Fe2O3 was synthesized by a self-propagation method. However, α-Fe203 was synthesized after calcination at 400℃ for 2 h. The coercivity of the samples synthesized by calcination at 400℃ for 2 h after self-propagation was found to increase significantly, thereby presenting hard magnetic properties. 展开更多
关键词 inorganic compounds iron oxides microtubuleS sol-gel process magnetic properties
下载PDF
Zonula occludin toxin,a microtubule binding protein 被引量:1
14
作者 MariaRosaria DiPierro Alessio Fasano 《World Journal of Gastroenterology》 SCIE CAS CSCD 2000年第3期330-334,共5页
AIM To investigate the interaction of Zot withmicrotubule.METHODS Zot affinity column was applied topurify Zot-binding protein(s)from crudeintestinal cell lysates.After incubation at roomtemperature,the column was w... AIM To investigate the interaction of Zot withmicrotubule.METHODS Zot affinity column was applied topurify Zot-binding protein(s)from crudeintestinal cell lysates.After incubation at roomtemperature,the column was washed and theproteins bound to the Zot affinity column wereeluted by step gradient with NaCl(0.3 mol·L<sup>-1</sup>-0.5mol·L<sup>-1</sup>).The fractions were subjected to6.0%-15.0%(w/v)gradient SDS-PAGE andthen transferred to PVDF membrane for N-terminal sequencing.Purified Zot and tauprotein were blotted by using anti-Zot or anti-tauantibodies.Finally,purified Zot was tested in anin vitro tubulin binding assay.RESULTS Fractions from Zot affinity columnyielded two protein bands with a Mr of 60 kU and45kU respectively.The N-terminal sequence ofthe 60 kU band resulted identical to β-tubulin.Zot also cross-reacts with anti-tau antibodies.Inthe in vitro tubulin binding assay,Zot co-precipitate with Mt,further suggesting that Zotpossesses tubulin-binding properties.CONCLUSION Taken together,these resultssuggest that Zot regulates the permeability ofintestinal tight junctions by binding tointracellular Mt,with the subsequent activationof the intracellular signaling leading to thepermeabilization of intercellular tight junctions. 展开更多
关键词 microtubules microtubule PROTEINS microtubule-associated PROTEINS INTERCELLULAR junctions vibrio CHOLERAE CHOLERA TOXIN zonula occluding TOXIN
下载PDF
Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution 被引量:4
15
作者 Ke'en Chen Wenbin Zhang +2 位作者 Jing Chen Sumei Li Guoqing Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第32期3027-3035,共9页
Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive ... Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulat- ing Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite out- growth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased mem- brane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vin- culin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin. 展开更多
关键词 neural regeneration brain injury Rho-associated protein kinase neurite outgrowth microtubule REMODELING VINCULIN neuron HIPPOCAMPUS lysophosphatidic acid Y-27632 grants-supportedpaper NEUROREGENERATION
下载PDF
Paclitaxel Hydrogelator Delays Microtubule Aggregation
16
作者 梅斌 梁高林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第2期239-242,I0002,共5页
Paclitaxel (PTX) is one of the most efficient anticancer drugs for the treatment of cancers through β-tubulin-binding. Our previous work indicated that a PTX-derivative hydrogelator Fmoc-Phe-Phe-Lys(paclitaxel)-... Paclitaxel (PTX) is one of the most efficient anticancer drugs for the treatment of cancers through β-tubulin-binding. Our previous work indicated that a PTX-derivative hydrogelator Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr(H2PO3)-OH (1)could promote neuron branching but the underlying mechanism remains unclear. Using tubulin assembly-disassembly assay, in this work, we found that compound 1 obviously delayed more microtubule aggregation than PTX did. Under the catalysis of alkaline phosphatase, Fmoc-Phe-Phe-Lys(paclitaxel)- Tyr(H2PO3)-OH could self-assemble into nanofiber Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr-OH with width comparable to the size of αβ-tubulin dimer. Therefore, we proposed in this work that nanofiber Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr-OH not only inhibits the αβ-tubulin dimer binding to each other but also interferes with the plus end aggregation of microtubule. This work provides a new mechanism of the inhibition of microtubule formation by a PTX- derivative hydrogelator. 展开更多
关键词 PACLITAXEL HYDROGELATOR microtubule AGGREGATION
下载PDF
Identification and Preliminary Characterization of Wheat Mesophyll Cells 65 kDa Microtubule-associated Protein
17
作者 马爱珍 程娜娜 韩榕 《Agricultural Science & Technology》 CAS 2013年第1期26-29,共4页
[Objective] This study aimed to test the characteristics of MAP65 in wheat mesophyll cells by co-sedimentation experiments. [Method] We used wheat Linyou 2018 as the experimental material. Western blotting analysis wa... [Objective] This study aimed to test the characteristics of MAP65 in wheat mesophyll cells by co-sedimentation experiments. [Method] We used wheat Linyou 2018 as the experimental material. Western blotting analysis was carried out to de- tect the existing of 65 kDa MAP in the wheat mesophyll cells; spectrophotometery and SDS-PAGE were adopted to analyze the role of MAP65 in microtubules poly- merization in vitro. [Result] MAP65 indeed existed in wheat mesophyll cells. Co-sedi- mentation experiments showed that MAP65 can bind to microtubules, with the basic characteristics of the microtubule-associated proteins. Turbidimetric experiments showed that microtubule polymerization depended on the concentration of MAP65. Low concentrations of MAP65 promoted microtubule polymerization while high con- centrations of MAP65 inhibited microtubule polymerization. [Conclusion] This study laid significant basis for further research on physiological function of MAP65 protein. 展开更多
关键词 Wheat mesophyll cells TAXOL TUBULIN microtubuleS MAP65
下载PDF
Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism 被引量:1
18
作者 Peter W.Baas Andrew J.Matamoros 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期845-849,共5页
Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concern... Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited benefits for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kifl I or EgS), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that accompany abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain. 展开更多
关键词 microtubule AXON kinesin-5 Eg5 REGENERATION MONASTROL molecular motor protein
下载PDF
Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition 被引量:4
19
作者 Yu Lu Chen Liu +4 位作者 Yong-Feng Xu He Cheng Si Shi Chun-Tao Wu Xian-Jun Yu 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第4期386-394,共9页
BACKGROUND: Stathmin is a ubiquitous cytosolic regulatory phosphoprotein and is overexpressed in different human malignancies. The main physiological function of stathmin is to interfere with microtubule dynamics by ... BACKGROUND: Stathmin is a ubiquitous cytosolic regulatory phosphoprotein and is overexpressed in different human malignancies. The main physiological function of stathmin is to interfere with microtubule dynamics by promoting depolymerization of microtubules or by preventing polymerization of tubulin heterodimers. Stathmin plays important roles in regulating many cellular functions as a result of its microtubuledestabilizing activity. Currently, the critical roles of stathmin in cancer cells, as well as in lymphocytes have been valued. This review discusses stathmin and microtubule dynamics in cancer development, and hypothesizes their possible relationship with epithelial-mesenchymal transition(EMT).DATA SOURCES: A PubMed search using such terms as "stathmin", "microtubule dynamics", "epithelial-mesenchymal transition", "EMT", "malignant potential" and "cancer" was performed to identify relevant studies published in English.More than 100 related articles were reviewed.RESULTS: The literature clearly documented the relationship between stathmin and its microtubule-destabilizing activity of cancer development. However, the particular mechanism is poorly understood. Microtubule disruption is essential for EMT, which is a crucial process during cancer development. As a microtubule-destabilizing protein, stathmin may promote malignant potential in cancer cells by initiating EMT.CONCLUSIONS: We propose that there is a stathminmicrotubule dynamics-EMT(S-M-E) axis during cancer development. By this axis, stathmin together with itsmicrotubule-destabilizing activity contributes to EMT, which stimulates the malignant potential in cancer cells. 展开更多
关键词 stathmin microtubule dynamics epithelial-mesenchymal transition malignant potential cancer
下载PDF
Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis 被引量:3
20
作者 Chen,Q Zhang,X +2 位作者 Jiang,Q Clarke,PR Zhang,C 《Cell Research》 SCIE CAS CSCD 2008年第2期268-280,共13页
Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphor... Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin B1 regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin B1 is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin B1 is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin B1 by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin B1 accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of mi- crotubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin B1 is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint. 展开更多
关键词 cyclin B1 KINETOCHORE DYNEIN chromosome alignment microtubule attachment
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部