期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fabrication and performance optimization of Mn-Zn ferrite/EP composites as microwave absorbing materials 被引量:2
1
作者 王文杰 臧充光 焦清介 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期478-482,共5页
Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by... Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz). 展开更多
关键词 ferrite composite material microwave absorber
下载PDF
Advances in microwave absorbing materials with broad-bandwidth response 被引量:1
2
作者 Susu Bao Meixi Zhang +2 位作者 Zhiyuan Jiang Zhaoxiong Xie Lansun Zheng 《Nano Research》 SCIE EI CSCD 2023年第8期11054-11083,共30页
Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-band... Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-bandwidth response are particularly important in the area of communication security,radiation prevention,electronic reliability,and military stealth.Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response,a number of challenges still remain,and the structure–function relationship of MAMs is still far from being completely understood.Herein,the advances in the design and research of MAMs with a broad-bandwidth response are outlined.The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives:the chemical combination strategy,morphological control strategy,and macrostructure control strategy.Several important results as well as design principles and absorption mechanisms are highlighted.A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided.The main challenges,new opportunities,and future perspectives in this promising field are also presented. 展开更多
关键词 microwave absorbing materials broad-bandwidth response magnetic-dielectric synergy morphology control macrostructure control
原文传递
Microwave-Absorbing Properties of La_(1-x)Sr_xMn_ (1-y)Fe_yO_3
3
作者 Wang Da Zhou Kesheng Yin Lisong Chen Mintao Deng Jianjie 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期313-313,共1页
The experiment samples of La1-xSrxMn1-y FeyO3(x = 0. 15, 0.20, 0.23; y = 0. 10, 0. 12, 0.14, 0.16) were prepared by sol-gel process, and the loss tangent and absorption coefficient in the range of 2 - 18 GHz were me... The experiment samples of La1-xSrxMn1-y FeyO3(x = 0. 15, 0.20, 0.23; y = 0. 10, 0. 12, 0.14, 0.16) were prepared by sol-gel process, and the loss tangent and absorption coefficient in the range of 2 - 18 GHz were measured by HP8722 net analyzing apparatus. It is found that changing the content of Sr or Fe would effect the microwave absorbing. When the thickness of La1-x SrxMn1-y FeyO3 is 2 mm and x =0.20, y = 0.14, the capability of microwave absorbing is the best one. There are two absorption peaks; the maximum is 34 dB and effective band width with 10 dB and more reaches 6.2 GHz. 展开更多
关键词 microwave absorbing materials magnetic loss dielectric loss rare earths
下载PDF
Preparation of bunched CeO_(2) and study on microwave absorbing properties with MWCNTs binary composite 被引量:1
4
作者 Yingjie Guo Xiangrui Song +3 位作者 Sihang Ma Yinghe Qi Xiaotao Yuan Huili Fan 《Particuology》 SCIE EI CAS CSCD 2023年第2期95-102,共8页
A novel bunched cerium oxide(CeO_(2))was prepared and its binary composite material with multi-walled carbon nanotubes presented an excellent microwave absorbing properties.The morphology,structure,and absorbing prope... A novel bunched cerium oxide(CeO_(2))was prepared and its binary composite material with multi-walled carbon nanotubes presented an excellent microwave absorbing properties.The morphology,structure,and absorbing properties of the composite material were investigated.It was found that the minimum reflection loss(RL)of the composite material at 15.79 GHz was−45.7 dB when the thickness was 5.5 mm.It was worth noting that when the composite material was in the thickness range of 5.0-7.5 mm and the frequency was 11.36-17.77 GHz,the electromagnetic wave RL was<−30 dB,which illustrated that the composite material had a good absorbing effect over a wide thickness range.The results of the study contributed to the design and preparation of efficient microwave absorbing materials(MAM)with rare earth oxide composites and their applications,which demonstrated the importance of new composites with special structures in the field of MAM. 展开更多
关键词 Bunched cerium oxide microwave absorbing material Multi-walled carbon nanotubes
原文传递
Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band 被引量:13
5
作者 Yixuan Han Mukun He +5 位作者 Jinwen Hu Panbo Liu Zhongwu Liu Zhonglei Ma Wenbo Ju Junwei Gu 《Nano Research》 SCIE EI CSCD 2023年第1期1773-1778,共6页
Microwave absorbing materials(MAMs)has been intensively investigated in order to meet the requirement of electromagnetic radiation control,especially in S and C band.In this work,FeCo-based magnetic MAMs are hydrother... Microwave absorbing materials(MAMs)has been intensively investigated in order to meet the requirement of electromagnetic radiation control,especially in S and C band.In this work,FeCo-based magnetic MAMs are hydrothermally synthesized via a magnetic-field-induced process.The composition and morphology of the MAMs are capable of being adjusted simultaneously by the atomic ratio of Fe2+to Co2+in the precursor.The hierarchical magnetic microchain,which has a core–shell structure of twodimensional FexCo1−xOOH nanosheets anchored vertically on the surface of a one-dimensional(1D)Co microchain,shows significantly enhanced microwave absorption in C band,resulting in a reflection loss(RL)of lower than−20 dB at frequencies ranging from 4.4 to 8.0 GHz under a suitable matching thickness.The magnetic coupling of Co microcrystals and the double-loss mechanisms out of the core-shell structure are considered to promote the microwave attenuation capability.The hierarchical design of 1D magnetic MAMs provides a feasible strategy to solve the electromagnetic pollution in C band. 展开更多
关键词 one-dimensional micromagnets hierarchical structure microwave absorbing material magnetic coupling double-loss mechanisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部