期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
UltrahighQ Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)microwave dielectric ceramics for temperature-stable millimeter-wave dielectric resonator antennas
1
作者 Guoqiang He Yu Jiang +9 位作者 Kaixin Song Yanjun Liu Yuan Nie Wenjie Zhang Ziqi Zhao Yinghan He Xinyue Ma Xiuli Chen Xu Li Huanfu Zhou 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第2期155-165,共11页
Microwave dielectric ceramics should be improved to advance mobile communication technologies further.In this study,we prepared Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics with nonstoichiometric Sr^(2+)ratios based on our ... Microwave dielectric ceramics should be improved to advance mobile communication technologies further.In this study,we prepared Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics with nonstoichiometric Sr^(2+)ratios based on our previously reported SrY_(2)O_(4) microwave dielectric ceramic,which has a low dielectric constant and an ultrahigh quality factor(Q value).The ceramic exhibited a 33.6% higher Q-by-frequency(Q×f)value(Q≈12,500)at x=0.02 than SrY_(2)O_(4).All Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited pure phase structures,although variations in crystal-plane spacings were observed.The ceramics are mainly composed of Sr-O,Y1-O,and Y_(2)-O octahedra,with the temperature coefficient of the resonant frequency(τ_(f))of the ceramic increasing with Y_(2)-O octahedral distortion.The ceramic comprises uniform grains with a homogeneous elemental distribution,clear grain boundaries,and no obvious cavities at x=0.02.The Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited good microwave dielectric properties,with optimal performance observed at x=0.02(dielectric constant(εr)=15.41,Q×f=112,375 GHz,and τ_(f)=-17.44 ppm/℃).The τ_(f) value was reduced to meet the temperaturestability requirements of 5G/6G communication systems by adding CaTiO_(3),with Sr_(1.02)Y_(2)O_(4.02)+2wt% CaTiO_(3) exhibiting ε_(r)=16.14,Q×f=51,004 GHz,andτf=0 ppm/℃.A dielectric resonator antenna prepared using Sr_(1.02)Y_(2)O_(4.02)+2wt%CaTiO_(3) exhibited a central frequency of 26.6 GHz,with a corresponding gain and efficiency of 3.66 dBi and 83.14%,respectively.Consequently,Sr_(1.02)Y_(2)O_(4).02-based dielectric resonator antennas are suitable for use in 5G millimeter-wave band(24.5-27.5 GHz)applications. 展开更多
关键词 millimeter wave microwave dielectric ceramics dielectric resonator antenna nonstoichiometric ratio
原文传递
Improved microwave dielectric properties of MgAl_(2)O_(4)spinel ceramics through(Li_(1/3)Ti_(2/3))^(3+)doping
2
作者 李潇 杨习志 +7 位作者 赖元明 张芹 李宝阳 戚聪 殷俊 王凡硕 巫崇胜 苏桦 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期668-673,共6页
A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,micros... A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications. 展开更多
关键词 microwave dielectric ceramics MgAl_(2)O_(4)ceramic co-substitution MgTi_(2)O_(5) solid solubility limit
下载PDF
The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams 被引量:5
3
作者 Hongcheng YANG Shuren ZHANG +5 位作者 Hongyu YANG Qingyu WEN Qiu YANG Ling GUI Qian ZHAO Enzhu LI 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第5期885-932,共48页
The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter It is a pressing need to advance the development of dielectric ceramics utilization of emerg... The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter It is a pressing need to advance the development of dielectric ceramics utilization of emerging technology to design new materials and understand the polarization mechanism.This review provides the summary of the study of microwave dielectric ceramics(MWDCs)sintered higher than 1000℃ from 2010 up to now,with the purpose of taking a broad and historical view of these ceramics and illustrating research directions.To date,researchers endeavor to explain the structure-property relationship of ceramics with multitude of approaches and design a new formula or strategy to obtain excellent microwave dielectric properties.There are variety of factors that impact the permittivity,dielectric loss,and temperature stability of dielectric materials,covering intrinsic and extrinsic factors.Many of these factors are often intertwined,which can complicate new dielectric material discovery and the mechanism investigation.Because of the various ceramics systems,pseudo phase diagram was used to classify the dielectric materials based on the composition.In this review,the ceramics were firstly divided into ternary systems,and then brief description of the experimental probes and complementary theoretical methods that have been used to discern the intrinsic polarization mechanisms and the origin of intrinsic loss was mentioned.Finally,some perspectives on the future outlook for high-temperature MWDCs were offered based on the synthesis method,characterization techniques,and significant theory developments. 展开更多
关键词 high-temperature microwave dielectric ceramics(MWDCs) pseudo phase diagram developments and challenges composition-structure-property relationship
原文传递
Room-temperature-densified H_(3)BO_(3) microwave dielectric ceramics with ultra-low permittivity and ultra-high Qf value 被引量:3
4
作者 Wen Bin Hong Lei Li +3 位作者 Han Yan Shu Ya Wu Hang Sheng Yang Xiang Ming Chen 《Journal of Materiomics》 SCIE EI 2020年第2期233-239,共7页
With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave... With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave dielectric properties are reported in H3BO3 ceramics with the molecular crystal structure,whose permittivity(2.84)and density(1.46 g/cm^(3))are record-low among the low-loss ceramics.The ultra-high Qf value of 146,000 GHz(or the ultra-low dielectric loss of 1.03×10^(-4) at 15 GHz)is also distinguished.Besides,the H_(3)BO_(3) ceramics can be densified at room temperature by a simple cold sintering process in a short time of 10 min,and this brings many advantages for the integration with microwave circuits.The large molecule volume originating from the molecular crystal structure and the low dielectric polarizabilities of H^(+) and B^(3+) are responsible for the ultra-low permittivity of H_(3)BO_(3) ceramics,and more microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are expected to be explored in the molecular crystals. 展开更多
关键词 Boric acid microwave dielectric ceramics Room-temperature cold sintering Ultra-low permittivity
原文传递
Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics 被引量:2
5
作者 Jincheng Qin Zhifu Liu +1 位作者 Mingsheng Ma Yongxiang Li 《Journal of Materiomics》 SCIE EI 2021年第6期1284-1293,共10页
Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of pract... Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model. 展开更多
关键词 microwave dielectric ceramics Low permittivity ceramics Permittivity prediction Machine learning Quantitative structure-property relationship
原文传递
Ultralow-loss (1-x)CaWO_(4)-xNa_(2)WO_(4) (x=0.1,0.2) microwave dielectric ceramic for LTCC applications 被引量:1
6
作者 Tao Sun Bin Xiao +5 位作者 Fei Jin` Xinwei Xu Feng Wang Naichao Chen Xianqiang Chen Hong Wang 《Journal of Materiomics》 SCIE EI 2021年第5期1022-1028,共7页
In this work,the(1-x)CaWO_(4)-xNa_(2)WO_(4)(x=0.1,0.2,denoted as 0.9CW-0.1NW and 0.8CW-0.2NW,respectively)ultralow-loss microwave dielectric ceramics were prepared via solid-state reaction method.Using low melting-poi... In this work,the(1-x)CaWO_(4)-xNa_(2)WO_(4)(x=0.1,0.2,denoted as 0.9CW-0.1NW and 0.8CW-0.2NW,respectively)ultralow-loss microwave dielectric ceramics were prepared via solid-state reaction method.Using low melting-point Na_(2)WO_(4) as sintering aid to prepare CaW_(O4)eNa_(2)WO_(4) composite ceramics,the sintering temperature of CaWO_(4) was successfully reduced while maintaining excellent microwave performance.The optimal microwave dielectric properties have been achieved at 900C for 0.9CW-0.1NW ceramic:εr=9.0,Q×f=105660 GHz,tandδ=1.1×10^(-4)and tf=35.4 ppm/℃ at a frequency of 12.0 GHz.For the 0.8CW-0.2NW ceramic,the optimal microwave dielectric properties have been obtained at 740C,withεr=8.5,Q×f=97014 GHz,tandδ=1.2×10^(-4)and tf=37.4 ppm/℃ at a frequency of 11.8 GHz.In summary,both composite ceramics exhibit low sintering temperatures,excellent dielectric properties and chemical compatibility with the Ag electrode.The findings of this study provide an effective approach to prepare novel composite ceramics as promising candidates for LTCC applications. 展开更多
关键词 Ultralow-loss LTCC Raman spectra microwave dielectric ceramics
原文传递
Crystal structure,chemical bond characteristics,infrared reflection spectrum,and microwave dielectric properties of Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9) ceramics 被引量:1
7
作者 Jian BAO Yuping ZHANG +2 位作者 Hideo KIMURA Haitao WU Zhenxing YUE 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第1期82-92,共11页
Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(... Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(NZ_(1−x)T_(x)M,x=0.02-0.10)ceramics were prepared through a solid-phase process.According to X-ray diffraction(XRD)patterns,the ceramics could form a pure crystal structure with the R3c(167)space group.The internal parameters affecting the properties of the ceramics were calculated and analyzed by employing Clausius-Mossotti relationship,Shannon’s rule,and Phillips-van Vechten-Levine(P-V-L)theory.Furthermore,theoretical dielectric loss of the ceramics was measured and analyzed by a Fourier transform infrared(IR)radiation spectrometer.Notably,when x=0.08 and sintered at 700℃,optimal microwave dielectric properties of the ceramics were obtained,including a dielectric constant(ε_(r))=10.94,Q·f=82,525 GHz(at 9.62 GHz),and near-zero resonant frequency temperature coefficient(τ_(f))=−12.99 ppm/℃.This study not only obtained an MWDC with excellent properties but also deeply analyzed the effects of Ti^(4+)on the microwave dielectric properties and chemical bond characteristics of Nd_(2)Zr_(3)(MoO_(4))_(9)(NZM),which laid a solid foundation for the development of rare-earth molybdate MWDC system. 展开更多
关键词 microwave dielectric ceramics(MWDCs) Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(NZ_(1−x)T_(x)M) Phillips-van Vechten-Levine(P-V-L)theory theoretical dielectric loss
原文传递
Synthesis,crystal structure and microwave dielectric properties of self-temperature stable Ba_(1-x)Sr_(x)CuSi_(2)O_(6) ceramics for millimeter-wave communication 被引量:4
8
作者 Xiao-Qiang Song Meng-Qi Xie +2 位作者 Kang Du Wen-Zhong Lu Wen Lei 《Journal of Materiomics》 SCIE EI 2019年第4期606-617,共12页
Ba_(1-x)Sr_(x)CuSi_(2)O_(6) compounds with a tetrahedral structure(I41/acd)were prepared through the solid-state reaction method.The phase building process,structural evolution and microwave dielectric properties of B... Ba_(1-x)Sr_(x)CuSi_(2)O_(6) compounds with a tetrahedral structure(I41/acd)were prepared through the solid-state reaction method.The phase building process,structural evolution and microwave dielectric properties of Ba_(1-x)Sr_(x)CuSi_(2)O_(6) were investigated.Single BaCuSi_(2)O_(6) phase can be obtained when calcined at 1050℃ for 3 h or 950℃ for 10 h.The substitution of Ba^(2+) by Sr^(2+) can effectively promote the sintering process and the maximum solubility of Ba_(1-x)Sr_(x)CuSi_(2)O_(6) was located between 0.25 and 0.30.Rietveld refinement,Raman-spectra and P-V-L complex chemical bond theory were used to explain the correlations between the crystal structures and microwave dielectric properties.The dielectric constant was dominated by the susceptibility(Σχ^(μ))and ionic polarizability.The quality factor(Q×f)was determined by the bond strength,packing fraction and lattice energy,especially the Si-O bond.The susceptibility of Cu-O bond and Si-O bond played an important role in controlling the temperature coefficient of the resonant frequency(τf).A near zero τf value was obtained at x=0-0.10 and the optimum microwave dielectric properties for Ba_(1-x)Sr_(x)CuSi_(2)O_(6) were achieved at x=0.20 when sintered at 1000℃ for 3 h:ε_(r)=8.25,Q×f=47616 GHz and τf=9.6 ppm/℃. 展开更多
关键词 microwave dielectric ceramics BaCuSi_(2)O_(6) Lattice energy
原文传递
Crystal structure and enhanced microwave dielectric properties of the Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9) ceramics at microwave frequency 被引量:3
9
作者 Chao FENG Xu ZHOU +2 位作者 Bingjing TAO Haitao WU Shifeng HUANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第3期392-402,共11页
Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their mic... Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃. 展开更多
关键词 microwave dielectric ceramics Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) Phillips-Van Vechten-Levine(P-V-L)theory low sintering temperature
原文传递
Structure,defects,and microwave dielectric properties of Al-doped and Al/Nd co-doped Ba_(4)Nd_(9.33)Ti_(18)O_(54)ceramics 被引量:1
10
作者 Weijia GUO Zhiyu MA +3 位作者 Yu LUO Yugu CHEN Zhenxing YUE Longtu LI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第4期629-640,共12页
Low-loss tungsten–bronze microwave dielectric ceramics are dielectric materials with potential application value for miniaturized dielectric filters and antennas in the fifth-generation(5G)communication technology.In... Low-loss tungsten–bronze microwave dielectric ceramics are dielectric materials with potential application value for miniaturized dielectric filters and antennas in the fifth-generation(5G)communication technology.In this work,a novel Al/Nd co-doping method of Ba_(4)Nd_(9.33)Ti_(18)O_(54)(BNT)ceramics with a chemical formula of Ba_(4)Nd_(9.33+z/3)Ti_(18−z)Al_(z)O_(54)(BNT–AN,0≤z≤2)was proposed to improve the dielectric properties through structural and defect modulation.Together with Al-doped ceramics(Ba_(4)Nd_(9.33)Ti_(18−z)Al_(4z/3)O_(54),BNT–A,0≤z≤2)for comparison,the ceramics were prepared by a solid state method.It is found that Al/Nd co-doping method has a significant effect on improving the dielectric properties compared with Al doping.As the doping amount z increased,the relative dielectric constant(εr)and the temperature coefficient of resonant frequency(τf)of the ceramics decreased,and the Q×f values of the ceramics obviously increased when z≤1.5.Excellent microwave dielectric properties ofεr=72.2,Q×f=16,480 GHz,andτf=+14.3 ppm/℃were achieved in BNT–AN ceramics with z=1.25.Raman spectroscopy and thermally stimulated depolarization current(TSDC)technique were firstly combined to analyze the structures and defects in microwave dielectric ceramics.It is shown that the improvement on Q×f values was originated from the decrease in the strength of the A-site cation vibration and the concentration of oxygen vacancies(VO××),demonstrating the effect and mechanism underlying for structural and defect modulation on the performance improvement of microwave dielectric ceramics. 展开更多
关键词 microwave dielectric ceramics Ba4Nd9.33Ti18O54(BNT) Al and Al/Nd doping structural and defect modulation
原文传递
Crystal structures and microwave dielectric properties of Sr_(2)MgWO_(6) ceramics at different sintering temperatures 被引量:1
11
作者 Jiqing Lv Zhikai Cao +2 位作者 Yuying Wang Feng Shi Jing Wang 《Journal of Materiomics》 SCIE 2022年第1期79-87,共9页
Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis w... Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics. 展开更多
关键词 microwave dielectric ceramics Crystal structures Intrinsic properties Lattice vibrational characteristics Structure-property relationships
原文传递
Microwave dielectric properties of Ba_(6-3x)La_(8+2x)(Ti_(1-z)Zr_z)_(18)O_(54)(x=2/3) ceramics
12
作者 高旭芳 丘泰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第3期411-415,共5页
Zr substitution for Ti was investigated to modify the dielectric properties of Ba6-3xLa8+2xTi18O54(x=2/3) ceramics.A single-phase solid solution with tungstenbronze-like structure was formed in the range of 0<z<... Zr substitution for Ti was investigated to modify the dielectric properties of Ba6-3xLa8+2xTi18O54(x=2/3) ceramics.A single-phase solid solution with tungstenbronze-like structure was formed in the range of 0<z<0.2 in Ba6-3xLa8+2x(Ti1-zZrz)18O54 ceramics.As Zr content exceeded this range,a secondary phase of Ba2ZrO4 was detected.This is correlated with the decrease of tolerance factor.As Zr content increased,there was an expansion of the b-axis and c-axis,and increase in the cell volume.Incorporation of small levels of Zr into the structure led to a significant increase in Q·f values,from 2053 to 6665 GHz,a decrease in dielectric constant(εr) from 107.4 to 79.6 and the temperature coefficient of resonant frequency(τf) slightly improved.The maximum value of Q·f(6665 GHz,f=4.83 GHz) was achieved while εr was 79.6 and τf was 109.83×10-6 oC-1 for z=0.1.Microstructure studies with SEM indicated that the ceramics with larger and homogenous columnar grains had high Q·f value. 展开更多
关键词 dielectric properties microwave dielectric ceramics SUBSTITUTION tungstenbronze-like structure rare earths
原文传递
Preparation, crystal structure, and dielectric characterization of Li_(2)W_(2)O_(7) ceramic at RF and microwave frequency range
13
作者 Jinwu Chen Chunchun Li +2 位作者 Dan Wang Huaicheng Xiang Liang Fang 《Journal of Advanced Dielectrics》 CAS 2017年第1期1-5,共5页
Single phase Li_(2)W_(2)O_(7) with anorthic structure was prepared by the conventional solid-state reaction method at 550℃ and the anorthic structure was stable up to 660℃.The dielectric properties at radio frequenc... Single phase Li_(2)W_(2)O_(7) with anorthic structure was prepared by the conventional solid-state reaction method at 550℃ and the anorthic structure was stable up to 660℃.The dielectric properties at radio frequency(RF)and microwave frequency range were characterized.The sample sintered at 640℃ exhibited the optimum microwave dielectric properties with a relative permittivity of 12.2,a quality factor value of 17,700 GHz(at 9.8 GHz),and a temperature coefficient of the resonant frequency of232 ppm/℃ as well as a high relative density~94.1%.Chemical compatibility measurement indicated Li_(2)W_(2)O_(7) did not react with aluminum electrodes when sintered at 640℃ for 4 h. 展开更多
关键词 microwave dielectric ceramics LTCC anorthic structure
原文传递
Effects of rare earth oxides on dielectric properties of Y_2Ti_2O_7 series ceramics 被引量:1
14
作者 丁佳钰 肖瑗 +1 位作者 韩朋德 张其土 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第5期765-768,共4页
A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on th... A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on the microstructure and dielectric properties of Y2Ti2O7 ceramics were investigated. The experimental results showed that the rare earth ions were considered to dissolve in Y-sites of the pyrochlore structure, different rare earth oxides and concentration had different influences on Y2Ti2O7 ceramics. It was found that the rare earth oxide could decrease dielectric loss obviously, and the τf could be adjusted to zero with proper concentration. The Y2Ti2O7 ceramics with 1 mol.% neodymium oxide(Nd2O3) added showed optimum comprehensive properties, with the sintering temperature 1450 oC, the permittivity 45, the value of Q·f 22000 GHz, and the τf value 179 ppm/ oC, while 1 mol.% Nd oxide (Nd2O3) was added. 展开更多
关键词 microwave dielectric ceramics rare earth oxides Y2Ti2O7 pyrochlore structure doping modification rare earths
原文传递
Lattice vibrational characteristics,crystal structures and dielectric properties of non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3) ceramics 被引量:1
15
作者 Zhikai Cao En-Cai Xiao +7 位作者 Xue-Hui Li Zhenxing Yue Guohua Chen Ying Chen Kaixin Song Huanfu Zhou Ze-Ming Qi Feng Shi 《Journal of Materiomics》 SCIE EI 2020年第3期476-484,共9页
Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(... Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(XRD)and scanning electron microscopy(SEM),respectively.The main crystalline phase is monoclinic Nd(Mg_(1/2)Sn_(1/2))O_(3) with a double perovskite structure(P21/n space group)for the NMS system proved by XRD.The sample at x=0.01 has the best crystallinity and evenly distributed crystal grains observed by SEM.The optimum performances(ε_(r)=19.87,Q×f=41840 GHz,f=12.05 GHz)are obtained at x=0.01.Lattice vibrational modes of the Raman spectra were assigned and illustrated,in detail.The dielectric properties obtained by fitting infrared reflectance spectra with the help of four-parameter semi-quantum model are consistent with the calculated values by microscopic polarization and damping coefficients.The reverse translational vibration of the NdeMgO_(6),the F_(5u)^((5)) mode,provides the greatest contribution to the dielectric response.The relationships between crystal structures and dielectric properties were mainly established using lattice vibrational modes as a media. 展开更多
关键词 microwave dielectric ceramics Non-stoichiometric Lattice vibrational characteristics Crystal structures dielectric properties
原文传递
Phonon characteristics and dielectric properties of BaMoO_(4)ceramic 被引量:1
16
作者 En-Cai Xiao Jianzhu Li +7 位作者 Jing Wang Chao Xing Mei Guo Hengyang Qiao Qing Wang Ze-Ming Qi Gang Dou Feng Shi 《Journal of Materiomics》 SCIE EI 2018年第4期383-389,共7页
BaMoO_(4)ceramic was prepared using a conventional solid-sintering method.It was observed that the sample is a pure BaMoO_(4)with a tetragonal scheelite structure by analyzing X-ray diffraction data.Scanning electron ... BaMoO_(4)ceramic was prepared using a conventional solid-sintering method.It was observed that the sample is a pure BaMoO_(4)with a tetragonal scheelite structure by analyzing X-ray diffraction data.Scanning electron microscopy characterized the dense sample with uniform grains.The phonon modes were analyzed by Raman and Far-infrared reflection spectra,and the phonon characteristics were studied.The intrinsic properties of the sample were calculated by the four-parameter semi-quantum model as well as the Clausius-Mosotti&damping equations,and the results were ofεr=9.388 and tanδ=4.760×10^(-4),εr=9.798 and tanδ=6.445×10^(-4),respectively,which agrees well with the experimental values(εr=9.84,tanδ=5.0×10^(-4)).The contributions to dielectric properties of each mode were investigated,and the results indicate that the external mode(Eu)yield greatest contribution to intrinsic permittivity and loss. 展开更多
关键词 microwave dielectric ceramic BaMoO^(4) Crystal structure dielectric properties Phonon characteristics
原文传递
Precise prediction of dielectric property for CaZrO_(3) ceramic
17
作者 Chao Xing Jing Wang +1 位作者 Jianzhu Li Feng Shi 《Journal of Advanced Dielectrics》 CAS 2018年第4期49-53,共5页
As for CaZrO_(3)(CZ)ceramic,the reported dielectric property values,especially dielectric constants,were much different from 23 to 32,which is reliable and credible?Without precise property data,CZ can’t be further d... As for CaZrO_(3)(CZ)ceramic,the reported dielectric property values,especially dielectric constants,were much different from 23 to 32,which is reliable and credible?Without precise property data,CZ can’t be further developed and utilized accurately.Herein,CZ ceramic was fabricated by a traditional two-step sintering process,then simulated and calculated the dielectric properties precisely at a microscopic polarization angle using the lattice vibrational spectra and the Clausius-Mossotti(C-M)as well as damping equations.The Raman and Fourier transform far-infrared modes were analyzed and used to predict the intrinsic properties,which were consistent well with the values calculated from C-M and damping equations.The intrinsic permittivity,after precise prediction,is about 20,which is reliable and credible.As for the dielectric loss,the value of about 6×10^(-4)was obtained after precise calculation,which is similar to other results. 展开更多
关键词 microwave dielectric ceramic lattice vibrational mode intrinsic property precise prediction microscopic polarization.
原文传递
Intrinsic dielectric properties and vibration characteristics of La(Mg_(1/2)Sn_(1/2))O_(3) ceramic
18
作者 Chao Xing Jianzhu Li +4 位作者 Hengyang Qiao Huiling Chen Jing Wang Xunqian Yin Feng Shi 《Journal of Materiomics》 SCIE EI 2019年第1期127-132,共6页
La(Mg_(1/2)Sn_(1/2))O_(3)(LMS)ceramic was synthesized via the conventional solid-state reaction method.The main phase of the sample is LMS with a double perovskite structure(monoclinic P121/n1 symmetry),which is confi... La(Mg_(1/2)Sn_(1/2))O_(3)(LMS)ceramic was synthesized via the conventional solid-state reaction method.The main phase of the sample is LMS with a double perovskite structure(monoclinic P121/n1 symmetry),which is confirmed by X-ray diffraction.Scanning electron microscopy shows the sample is wellcrystallized with dense and uniform grains as well as clear grain boundaries.The Raman scattering and Fourier transform far-infrared reflection spectroscopies were employed to analyze the lattice vibrational modes of the sample.The Raman active modes were fitted by the Lorentz function,and the lattice vibrational modes were assigned and illustrated accurately.The four-parameter semiquantum model was applied to simulate the intrinsic dielectric properties,which agree well with the data calculated from the microscopic polarizability&damping angles.The A1g(La)Raman mode in A-site has a great impact on the dielectric loss,and F^(2)_(3u)mode makes the largest contribution to the dielectric constant and the dielectric loss. 展开更多
关键词 microwave dielectric ceramic Double perovskite Crystal structures Intrinsic dielectric properties Vibration characteristics
原文传递
Influence of Re-ions with different ionic radius in Ba_(12)ReNb_(9)O_(36) on crystal structure and microwave dielectric properties
19
作者 Pengcheng Zhang Hao Li +4 位作者 Xiaoqing Chen Xing Zhang Hongcheng Yang Canbing Li Shuren Zhang 《Journal of Materiomics》 SCIE 2022年第1期104-112,共9页
The Ba_(12)ReNb_(9)O_(36)(Re=Yb,Ce,Tm,Er,Y,Ho,Dy,Gd)ceramics are synthesized by solid-phase reaction method.The phase composition,crystal structure,microstructure,and microwave dielectric properties of the ceramics ar... The Ba_(12)ReNb_(9)O_(36)(Re=Yb,Ce,Tm,Er,Y,Ho,Dy,Gd)ceramics are synthesized by solid-phase reaction method.The phase composition,crystal structure,microstructure,and microwave dielectric properties of the ceramics are investigated by X-ray diffraction,X-ray photoelectron spectroscopy,Scanning electron microscopy and Raman spectrum.The optimal microwave dielectric properties(ε_(r)=37.23,Q×f=36600 GHz,andτ_(f)=34 ppm/℃)are obtained for Ba_(12)YbNb_(9)O_(36) ceramic sintered at 1420℃for 6 h.In this system,the variation of dielectric constant is dominated by polarizability.The Q×f is mainly affected by internal strain/fluctuation of d-spacing.The variation of τ_(f) is related to the temperature coefficient of dielectric constant and the oxygen octahedron distortion.Furthermore,the reduction of Ce^(4+) ions,the relative density,linear thermal expansion coefficient,and the second phase are also important factors affecting microwave dielectric properties. 展开更多
关键词 microwave dielectric ceramic Ba_(12)ReNb_(9)O_(36) POLARIZABILITY Raman spectrum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部