期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Thorough Evaluation of the Passive Microwave Radiometer Measurements onboard Three Fengyun-3 Satellites 被引量:3
1
作者 Xinran XIA Wenying HE +4 位作者 Shengli WU Disong FU Wei SHAO Peng ZHANG Xiangao XIA 《Journal of Meteorological Research》 SCIE CSCD 2023年第4期573-588,共16页
Microwave Radiometer Imager(MWRI) is a key payload of China’s second generation polar meteorological satellite, i.e., Fengyun-3 series(FY-3). Up to now, 5 satellites including FY-3A(2008), FY-3B(2010), FY-3C(2013), F... Microwave Radiometer Imager(MWRI) is a key payload of China’s second generation polar meteorological satellite, i.e., Fengyun-3 series(FY-3). Up to now, 5 satellites including FY-3A(2008), FY-3B(2010), FY-3C(2013), FY-3D(2018), and FY-3E(2021) have been launched successfully to provide multiwavelength, all-weather, and global data for decades. Much progress has been made on the calibration of MWRI and a recalibrated MWRI brightness temperature(BT) product(V2) was recently released. This study thoroughly evaluates the accuracy of this new product from FY-3B, 3C, and 3D by using the simultaneous collocated Global Precipitation Measurement(GPM)Microwave Imager(GMI) measurements as a reference. The results show that the mean biases(MBEs) of the BT between MWRI and GMI are generally less than 0.5 K and the root mean squares(RMSs) between them are less than1.5 K. The previous notable ascending and descending difference of the MWRI has disappeared. This indicates that the new MWRI recalibration procedure is very effective in removing potential errors associated with the emission of the hot-load reflector. Analysis of the dependence of MBE on the latitude and earth scene temperature shows that MBE decreases with decreasing latitude over ocean. Furthermore, MBE over ocean decreases linearly with increasing scene temperature for almost all channels, whereas this does not occur over land. A linear regression fitting is then used to modify MWRI, which can reduce the MBE over ocean to be within 0.2 K. The standard deviation of error of GMI, FY-3B, and FY-3D MWRI BT data derived by using the three-cornered hat method(TCH) shows that GMI has the best overall performance over ocean except at 10.65 GHz where its standard deviation of error is slightly larger than that of FY-3D. Over land, the standard deviation of error of FY-3D is the lowest at almost all channels except at 89V. MWRI onboard FY-3 series satellites would serve as an important passive microwave radiometer member of the constellation to monitor key surface and atmospheric properties. 展开更多
关键词 microwave radiometer Imager(MWRI) Global Precipitation Measurement(GPM)microwave Imager(GMI) brightness temperature(BT) the three-cornered hat method(TCH)
原文传递
Comparison of TMI and AMSR-E sea surface temperatures with Argo near-surface temperatures over the global oceans 被引量:1
2
作者 CHEN Xingrong LIU Zenghong +1 位作者 SUN Chaohui WANG Haiyan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第3期52-59,共8页
Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) we... Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) were compared with non-pumped near-surface temperatures(NSTs) obtained from Argo profiling floats over the global oceans. Factors that might cause temperature differences were examined, including wind speed, columnar water vapor, liquid cloud water, and geographic location. The results show that both TMI and AMSR-E SSTs are highly correlated with the Argo NSTs; however, at low wind speeds, they are on average warmer than the Argo NSTs. The TMI performs slightly better than the AMSR-E at low wind speeds, whereas the TMI SST retrievals might be poorly calibrated at high wind speeds. The temperature differences indicate a warm bias of the TMI/AMSR-E when columnar water vapor is low, which can indicate that neither TMI nor AMSR-E SSTs are well calibrated at high latitudes. The SST in the Kuroshio Extension region has higher variability than in the Kuroshio region. The variability of the temperature difference between the satellite-retrieved SSTs and the Argo NSTs is lower in the Kuroshio Extension during spring. At low wind speeds, neither TMI nor AMSR-E SSTs are well calibrated, although the TMI performs better than the AMSR-E. 展开更多
关键词 Argo near-surface temperature tropical rainfall measuring mission(TRMM) microwave imager advanced microwave scanning radiometer for the earth observing system sea surface temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部