Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method int...A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method introduces more a priori knowledge and might obtain better results, though the two methods are equal in some cases.展开更多
A passive and multi-channel microwave sounder onboard the Chang'e-2 orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang'e-1 orbiter, the Ch...A passive and multi-channel microwave sounder onboard the Chang'e-2 orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang'e-1 orbiter, the Chang'e-2 orbiter obtained more accurate and comprehensive microwave brightness temperature data, which are helpful for further research. Since there is a close relationship between mi- crowave brightness temperature data and some related properties of the lunar regolith, such as the thickness, temperature and dielectric constant, precise and high resolution brightness temperature data are necessary for such research. However, through the detection mechanism of the microwave sounder, the brightness temperature data ac- quired from the microwave sounder are weighted by the antenna radiation pattern, so the data are the convolution of the antenna radiation pattern with the lunar brightness temperature. In order to obtain the real lunar brightness temperature, a deconvolution method is needed. The aim of this paper is to solve the problem associated with per- forming deconvolution of the lunar brightness temperature. In this study, we introduce the maximum entropy method (MEM) to process the brightness temperature data and achieve excellent results. The paper mainly includes the following aspects: first, we introduce the principle of the MEM; second, through a series of simulations, the MEM has been verified as an efficient deconvolution method; and third, the MEM is used to process the Chang'e-2 microwave data and the results are significant.展开更多
Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still car...Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.展开更多
This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied....This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.展开更多
A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and li...A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and linear sweep voltammetry.The cubic TiO2particles were approximately60nm in size and were distributed on the graphene sheets.The Pt nanoparticles were uniformly distributed between the TiO2particles and the graphene sheet.The catalyst exhibited a significant improvement in activity and stability towards the oxygen reduction reaction compared with Pt/C,which resulted from the high electronic conductivity of graphene and strong metal‐support interactions.展开更多
As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,red...As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,reduction–diffusion method was innovatively applied to synthesize rare earth alloy Y_(2)Fe_(17).In order to regulate the electromagnetic parameters of absorbers,the Y_(2)Fe_(17)N_(3-δ)particles were coated with silica(Y_(2)Fe_(17)N_(3-δ)@SiO_(2))and absorbers with different volume fractions were prepared.The relationship between impedance matching,matching thickness,and the strongest reflection loss peak(RLmin)was presented obviously.Compared to the microwave absorption properties of Y_(2)Fe_(17)N_(3-δ)/PU absorber,Y_(2)Fe_(17)N_(3-δ)@SiO_(2)/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness,light weight,strong absorbing intensity,and broad bandwidth.Based on microwave frequency bands,the microwave absorption properties of the absorbers were analyzed and the related parameters were listed.As an important parameter related to perfect matching,reflection factor(√ε_(r)/μ_(r))was discussed combined with microwave amplitude attenuation.According to the origin and mathematical model of bandwidth,the formula of EAB(RL<-10 dB)was derived and simplified.The calculated bandwidths agreed well with experimental results.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.展开更多
A new approach based on resonance technique and modified boundary ele-ment method is presented to calculate the impedance parameter matrix of a microwaveN-port network of waveguide structure.A two port network is take...A new approach based on resonance technique and modified boundary ele-ment method is presented to calculate the impedance parameter matrix of a microwaveN-port network of waveguide structure.A two port network is taken as a numerical ex-ample and the results show that the approach occupys the advantages of high accuracyand less computation effort.展开更多
Decoction of Kampo medicines plays an important role in clinical practice, especially in individualized treatment, while the inconvenience and a long time requirement of the decocting process are impediments to its wi...Decoction of Kampo medicines plays an important role in clinical practice, especially in individualized treatment, while the inconvenience and a long time requirement of the decocting process are impediments to its widespread use in Japan. In this study, we improved the decocting method by using a microwave oven such as those found in most kitchens. To validate the feasibility and safety of this new method, we decocted kakkonto, which is the most widely used formula in clinical treatment in Japan, and keishikabushito, which contains toxic components using a microwave oven. Regarding the contents of 8 characteristic components in the kakkonto decoction and the contents of 6 toxic components in the keishikabushito decoction as indices, and with the extraction and detoxification effects equal to those of the conventional decocting method as targets, we optimized the decocting conditions with Response Surface Methods. With this new method, it took 35 min to obtain almost the same extraction effect for kakkonto as with the conventional decocting method, which takes 40 min;meanwhile, it took only 45 min to detoxify keishikabushito, which takes 60 min using the conventional decocting method. Decocting Kampo medicines with a microwave oven is feasible and as safe as the conventional decocting method. It is a convenient, safe, time-saving method, and may be applied widely in clinical practice. This innovation should allow more patients to benefit from decoction and the individualized treatment it offers.展开更多
In this peper we have synthesized powder crystal form (Y,Gd) BO3:Eu(3+)Phosphors by microwave heating method. ItS structure belongs to hexagonal system with lattice parameters a=0.3796,c=0. 8835. Its excitation spetra...In this peper we have synthesized powder crystal form (Y,Gd) BO3:Eu(3+)Phosphors by microwave heating method. ItS structure belongs to hexagonal system with lattice parameters a=0.3796,c=0. 8835. Its excitation spetra peaks at 239.0nm and 240. 0nm monitored at the emission of 589nm and 612nm respectively, the half peak width is 40nm. Under 240nm excitation the phosphors show a strons oranse-red luminescence, the fluorescent intensity ratio for I589/I612 is 1.9/1展开更多
This article examined in detail microwave radiometer functioning algorithm with synchronously using of the two types of pulse modulation: amplitude pulse modulation and pulse-width modulation. This allows a zero-radio...This article examined in detail microwave radiometer functioning algorithm with synchronously using of the two types of pulse modulation: amplitude pulse modulation and pulse-width modulation. This allows a zero-radiometer measurement method to realize when the fluctuation effect of the receiver gain and the influence of its own noise changes are minimized. A zero balance automatically maintains in radiometer. The antenna signal is indirectly determined through the signal duration that controls the pulse-width modulation. An analytical expression of the fluctuation sensitivity was obtained in a general form. From its analysis gain in sensitivity, conditions were defined by the optimizing of the radiometer input knot’s construction. Three modifications of the radiometer input knot were researched. Fluctuation sensitivity at different measurement range was determined for modification of the radiometer input knot.展开更多
Using a low power microwave generator and a surfatron discharge cavity, Ti3O5 was synthesized via the hydrogenation of TiO2 in surface wave induced microwave plasma. Besides, the chemical behavior of hydrogen in the p...Using a low power microwave generator and a surfatron discharge cavity, Ti3O5 was synthesized via the hydrogenation of TiO2 in surface wave induced microwave plasma. Besides, the chemical behavior of hydrogen in the plasma and its influence on the formation of Ti3O5 were preliminarily studied.展开更多
Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods...Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods: The finite element method (FEM) was used to calculate,electromagnetic field and SAR distribution. Two different structure applicators were simulated. Theone is simple coaxial antenna, which has been successfully used in clinic treating bone tumors inTangdu hospital of the Forth Military Medical University several years. It was formed by a coaxialcable peeled off the out copper at end. The other applicator was coaxial- slot antenna, which waswidely used in microwave hyperthermia. The applicator inserted into the cylindrical bone withdifferent depths, and worked at the frequency of 2 450 MHz. Results: The electric field and SARgenerated by the simple coaxial applicator were mainly concentrated out the tissues, and were notuniform in the tissues, while the coaxial- slot applicator well transmits the electric field and SARinto the tissues, and can easily treat different position by adjusting the slat position.Conclusion: The results calculated by EFM, were well accordant with the experimental and clinicalresulls, and will be important for improving the clinical effects of microwave hyperthermia.展开更多
A novel synthesis method of carbon-coated LiNil/3Mnl/3COl/302 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepar...A novel synthesis method of carbon-coated LiNil/3Mnl/3COl/302 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepared powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and charge/discharge tests. XRD results indicate that the carbon coating does not change the phase structure of LiNil/3Mnl/3C01/302 material. SEM results show that the surface of spherical carbon-coated material becomes rough. Electrochemical performance results show that the carbon coating can improve the cycling performance of LiNii/3Mnl/3C01/302. The specific discharge capacity retention of the carbon-coated LiNi1/3Mnt/3Col/30z reached 85.0%-96.0% at the 50th cycle at 0.2C rate, and the specific discharge capacity retention is improved at a high rate.展开更多
Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating hu...Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.展开更多
The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6%...The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6% alkali solution. Then, microwave treatment was used to treat the alkali treated sugar palm fibres. Three types of temperatures(i.e. 70, 80 and 90℃) were applied in microwave treatment. The extruder and hot press machines were used to mixing the sugar palm fibres and polyurethane resin, and fabricate the composites. Tensile properties(i.e. tensile strength, tensile modulus and elongation at break) were studied by following the ASTM D-638 standard. The highest tensile strength was recorded 18.42 MPa with microwave temperature at 70℃ and 6% alkali pre-treatment. Therefore, the temperature 70℃ of microwave treatment may consider the best degree cent grate.展开更多
The scattering characteristics of microwaves (MWs) by an underdense inhomoge- neous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled wit...The scattering characteristics of microwaves (MWs) by an underdense inhomoge- neous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled with low pressure argon. The plasma density in the column can be varied by adjusting the discharge current. The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles. The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency. The power peak of the scattering wave shifts away from 0° to about ±15° direction. The finite-different time-domain (FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions. The reflected MW power from a metal plate located behind the column is also measured to investi- gate the scattering effect on reducing MW refiectivity of a metal target. This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.展开更多
The scattering features of microwave(MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finitedifference time-domain(FDTD) method. The...The scattering features of microwave(MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finitedifference time-domain(FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.展开更多
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
文摘A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method introduces more a priori knowledge and might obtain better results, though the two methods are equal in some cases.
基金Supported by the National Natural Science Foundation of China
文摘A passive and multi-channel microwave sounder onboard the Chang'e-2 orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang'e-1 orbiter, the Chang'e-2 orbiter obtained more accurate and comprehensive microwave brightness temperature data, which are helpful for further research. Since there is a close relationship between mi- crowave brightness temperature data and some related properties of the lunar regolith, such as the thickness, temperature and dielectric constant, precise and high resolution brightness temperature data are necessary for such research. However, through the detection mechanism of the microwave sounder, the brightness temperature data ac- quired from the microwave sounder are weighted by the antenna radiation pattern, so the data are the convolution of the antenna radiation pattern with the lunar brightness temperature. In order to obtain the real lunar brightness temperature, a deconvolution method is needed. The aim of this paper is to solve the problem associated with per- forming deconvolution of the lunar brightness temperature. In this study, we introduce the maximum entropy method (MEM) to process the brightness temperature data and achieve excellent results. The paper mainly includes the following aspects: first, we introduce the principle of the MEM; second, through a series of simulations, the MEM has been verified as an efficient deconvolution method; and third, the MEM is used to process the Chang'e-2 microwave data and the results are significant.
基金supported by the National Natural Science Foundation of China (U1303291)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.
文摘This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.
基金supported by the National Natural Science Foundation of China(21376113)the Jiangsu Specially Appointed Professor Projectthe Graduate Student Scientific Research Innovation Projects in Jiangsu Province(KYZZ15_0384)~~
文摘A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and linear sweep voltammetry.The cubic TiO2particles were approximately60nm in size and were distributed on the graphene sheets.The Pt nanoparticles were uniformly distributed between the TiO2particles and the graphene sheet.The catalyst exhibited a significant improvement in activity and stability towards the oxygen reduction reaction compared with Pt/C,which resulted from the high electronic conductivity of graphene and strong metal‐support interactions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3501300)the National Natural Science Foundation of China(Grant No.51731001)the Fund from the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s Key Research and Development Projects。
文摘As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,reduction–diffusion method was innovatively applied to synthesize rare earth alloy Y_(2)Fe_(17).In order to regulate the electromagnetic parameters of absorbers,the Y_(2)Fe_(17)N_(3-δ)particles were coated with silica(Y_(2)Fe_(17)N_(3-δ)@SiO_(2))and absorbers with different volume fractions were prepared.The relationship between impedance matching,matching thickness,and the strongest reflection loss peak(RLmin)was presented obviously.Compared to the microwave absorption properties of Y_(2)Fe_(17)N_(3-δ)/PU absorber,Y_(2)Fe_(17)N_(3-δ)@SiO_(2)/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness,light weight,strong absorbing intensity,and broad bandwidth.Based on microwave frequency bands,the microwave absorption properties of the absorbers were analyzed and the related parameters were listed.As an important parameter related to perfect matching,reflection factor(√ε_(r)/μ_(r))was discussed combined with microwave amplitude attenuation.According to the origin and mathematical model of bandwidth,the formula of EAB(RL<-10 dB)was derived and simplified.The calculated bandwidths agreed well with experimental results.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.
文摘A new approach based on resonance technique and modified boundary ele-ment method is presented to calculate the impedance parameter matrix of a microwaveN-port network of waveguide structure.A two port network is taken as a numerical ex-ample and the results show that the approach occupys the advantages of high accuracyand less computation effort.
文摘Decoction of Kampo medicines plays an important role in clinical practice, especially in individualized treatment, while the inconvenience and a long time requirement of the decocting process are impediments to its widespread use in Japan. In this study, we improved the decocting method by using a microwave oven such as those found in most kitchens. To validate the feasibility and safety of this new method, we decocted kakkonto, which is the most widely used formula in clinical treatment in Japan, and keishikabushito, which contains toxic components using a microwave oven. Regarding the contents of 8 characteristic components in the kakkonto decoction and the contents of 6 toxic components in the keishikabushito decoction as indices, and with the extraction and detoxification effects equal to those of the conventional decocting method as targets, we optimized the decocting conditions with Response Surface Methods. With this new method, it took 35 min to obtain almost the same extraction effect for kakkonto as with the conventional decocting method, which takes 40 min;meanwhile, it took only 45 min to detoxify keishikabushito, which takes 60 min using the conventional decocting method. Decocting Kampo medicines with a microwave oven is feasible and as safe as the conventional decocting method. It is a convenient, safe, time-saving method, and may be applied widely in clinical practice. This innovation should allow more patients to benefit from decoction and the individualized treatment it offers.
文摘In this peper we have synthesized powder crystal form (Y,Gd) BO3:Eu(3+)Phosphors by microwave heating method. ItS structure belongs to hexagonal system with lattice parameters a=0.3796,c=0. 8835. Its excitation spetra peaks at 239.0nm and 240. 0nm monitored at the emission of 589nm and 612nm respectively, the half peak width is 40nm. Under 240nm excitation the phosphors show a strons oranse-red luminescence, the fluorescent intensity ratio for I589/I612 is 1.9/1
文摘This article examined in detail microwave radiometer functioning algorithm with synchronously using of the two types of pulse modulation: amplitude pulse modulation and pulse-width modulation. This allows a zero-radiometer measurement method to realize when the fluctuation effect of the receiver gain and the influence of its own noise changes are minimized. A zero balance automatically maintains in radiometer. The antenna signal is indirectly determined through the signal duration that controls the pulse-width modulation. An analytical expression of the fluctuation sensitivity was obtained in a general form. From its analysis gain in sensitivity, conditions were defined by the optimizing of the radiometer input knot’s construction. Three modifications of the radiometer input knot were researched. Fluctuation sensitivity at different measurement range was determined for modification of the radiometer input knot.
文摘Using a low power microwave generator and a surfatron discharge cavity, Ti3O5 was synthesized via the hydrogenation of TiO2 in surface wave induced microwave plasma. Besides, the chemical behavior of hydrogen in the plasma and its influence on the formation of Ti3O5 were preliminarily studied.
文摘Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods: The finite element method (FEM) was used to calculate,electromagnetic field and SAR distribution. Two different structure applicators were simulated. Theone is simple coaxial antenna, which has been successfully used in clinic treating bone tumors inTangdu hospital of the Forth Military Medical University several years. It was formed by a coaxialcable peeled off the out copper at end. The other applicator was coaxial- slot antenna, which waswidely used in microwave hyperthermia. The applicator inserted into the cylindrical bone withdifferent depths, and worked at the frequency of 2 450 MHz. Results: The electric field and SARgenerated by the simple coaxial applicator were mainly concentrated out the tissues, and were notuniform in the tissues, while the coaxial- slot applicator well transmits the electric field and SARinto the tissues, and can easily treat different position by adjusting the slat position.Conclusion: The results calculated by EFM, were well accordant with the experimental and clinicalresulls, and will be important for improving the clinical effects of microwave hyperthermia.
基金Project(U1202272)supported by the National Natural Science Foundation of China
文摘A novel synthesis method of carbon-coated LiNil/3Mnl/3COl/302 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepared powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and charge/discharge tests. XRD results indicate that the carbon coating does not change the phase structure of LiNil/3Mnl/3C01/302 material. SEM results show that the surface of spherical carbon-coated material becomes rough. Electrochemical performance results show that the carbon coating can improve the cycling performance of LiNii/3Mnl/3C01/302. The specific discharge capacity retention of the carbon-coated LiNi1/3Mnt/3Col/30z reached 85.0%-96.0% at the 50th cycle at 0.2C rate, and the specific discharge capacity retention is improved at a high rate.
基金Open access funding provided by Shanghai Jiao Tong University.
文摘Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
文摘The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6% alkali solution. Then, microwave treatment was used to treat the alkali treated sugar palm fibres. Three types of temperatures(i.e. 70, 80 and 90℃) were applied in microwave treatment. The extruder and hot press machines were used to mixing the sugar palm fibres and polyurethane resin, and fabricate the composites. Tensile properties(i.e. tensile strength, tensile modulus and elongation at break) were studied by following the ASTM D-638 standard. The highest tensile strength was recorded 18.42 MPa with microwave temperature at 70℃ and 6% alkali pre-treatment. Therefore, the temperature 70℃ of microwave treatment may consider the best degree cent grate.
文摘The scattering characteristics of microwaves (MWs) by an underdense inhomoge- neous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled with low pressure argon. The plasma density in the column can be varied by adjusting the discharge current. The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles. The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency. The power peak of the scattering wave shifts away from 0° to about ±15° direction. The finite-different time-domain (FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions. The reflected MW power from a metal plate located behind the column is also measured to investi- gate the scattering effect on reducing MW refiectivity of a metal target. This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.
文摘The scattering features of microwave(MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finitedifference time-domain(FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.